
The Org Manual
Release 7.8.11

by Carsten Dominik
with contributions by David O’Toole, Bastien Guerry, Philip Rooke, Dan Davison, Eric
Schulte, Thomas Dye and Jambunathan K.

This manual is for Org version 7.8.11.

Copyright c© 2004-2012 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.3 or any later
version published by the Free Software Foundation; with no Invariant Sections,
with the Front-Cover texts being “A GNU Manual,” and with the Back-Cover
Texts as in (a) below. A copy of the license is included in the section entitled
“GNU Free Documentation License.”

(a) The FSF’s Back-Cover Text is: “You have the freedom to copy and modify
this GNU manual. Buying copies from the FSF supports it in developing GNU
and promoting software freedom.”

This document is part of a collection distributed under the GNU Free Docu-
mentation License. If you want to distribute this document separately from the
collection, you can do so by adding a copy of the license to the document, as
described in section 6 of the license.

Permission is also granted to copy, distribute and/or modify this document
under the terms of the GNU General Public License (GPL). You should have
received a copy of the GNU General Public License along with GNU Emacs. If
not, see http://www.gnu.org/licenses/.

http://www.gnu.org/licenses/

i

Table of Contents

1 Introduction . 1
1.1 Summary . 1
1.2 Installation . 2
1.3 Activation . 3
1.4 Feedback . 3
1.5 Typesetting conventions used in this manual . 5

2 Document structure . 6
2.1 Outlines . 6
2.2 Headlines . 6
2.3 Visibility cycling . 6
2.4 Motion . 8
2.5 Structure editing . 8
2.6 Sparse trees . 11
2.7 Plain lists . 12
2.8 Drawers . 14
2.9 Blocks . 15
2.10 Footnotes . 15
2.11 The Orgstruct minor mode . 17

3 Tables . 18
3.1 The built-in table editor . 18
3.2 Column width and alignment . 21
3.3 Column groups . 22
3.4 The Orgtbl minor mode . 22
3.5 The spreadsheet . 23

3.5.1 References . 23
3.5.2 Formula syntax for Calc . 25
3.5.3 Emacs Lisp forms as formulas . 26
3.5.4 Durations and time values . 27
3.5.5 Field and range formulas . 27
3.5.6 Column formulas . 28
3.5.7 Editing and debugging formulas . 28
3.5.8 Updating the table . 30
3.5.9 Advanced features . 30

3.6 Org-Plot . 32

4 Hyperlinks . 34
4.1 Link format . 34
4.2 Internal links . 34

4.2.1 Radio targets . 35
4.3 External links . 35

ii

4.4 Handling links . 36
4.5 Using links outside Org . 39
4.6 Link abbreviations . 39
4.7 Search options in file links . 40
4.8 Custom Searches . 41

5 TODO items . 42
5.1 Basic TODO functionality . 42
5.2 Extended use of TODO keywords . 43

5.2.1 TODO keywords as workflow states . 43
5.2.2 TODO keywords as types . 43
5.2.3 Multiple keyword sets in one file . 44
5.2.4 Fast access to TODO states . 45
5.2.5 Setting up keywords for individual files 45
5.2.6 Faces for TODO keywords . 45
5.2.7 TODO dependencies . 46

5.3 Progress logging . 47
5.3.1 Closing items . 47
5.3.2 Tracking TODO state changes . 47
5.3.3 Tracking your habits . 48

5.4 Priorities . 50
5.5 Breaking tasks down into subtasks . 51
5.6 Checkboxes . 51

6 Tags . 54
6.1 Tag inheritance . 54
6.2 Setting tags . 54
6.3 Tag searches . 56

7 Properties and columns . 58
7.1 Property syntax . 58
7.2 Special properties . 60
7.3 Property searches . 60
7.4 Property Inheritance . 61
7.5 Column view . 61

7.5.1 Defining columns . 62
7.5.1.1 Scope of column definitions . 62
7.5.1.2 Column attributes . 62

7.5.2 Using column view . 63
7.5.3 Capturing column view . 65

7.6 The Property API . 66

iii

8 Dates and times . 67
8.1 Timestamps, deadlines, and scheduling . 67
8.2 Creating timestamps . 68

8.2.1 The date/time prompt . 69
8.2.2 Custom time format . 71

8.3 Deadlines and scheduling . 71
8.3.1 Inserting deadlines or schedules . 72
8.3.2 Repeated tasks . 73

8.4 Clocking work time . 74
8.4.1 Clocking commands . 74
8.4.2 The clock table . 76
8.4.3 Resolving idle time . 78

8.5 Effort estimates . 79
8.6 Taking notes with a relative timer . 80
8.7 Countdown timer . 81

9 Capture - Refile - Archive . 82
9.1 Capture . 82

9.1.1 Setting up capture . 82
9.1.2 Using capture . 82
9.1.3 Capture templates . 83

9.1.3.1 Template elements . 84
9.1.3.2 Template expansion . 86

9.2 Attachments . 87
9.3 RSS feeds . 88
9.4 Protocols for external access . 89
9.5 Refiling notes . 89
9.6 Archiving . 90

9.6.1 Moving a tree to the archive file . 90
9.6.2 Internal archiving . 90

10 Agenda views . 92
10.1 Agenda files . 92
10.2 The agenda dispatcher . 93
10.3 The built-in agenda views . 94

10.3.1 The weekly/daily agenda . 94
10.3.2 The global TODO list . 96
10.3.3 Matching tags and properties . 97
10.3.4 Timeline for a single file . 99
10.3.5 Search view . 99
10.3.6 Stuck projects . 100

10.4 Presentation and sorting . 100
10.4.1 Categories . 101
10.4.2 Time-of-day specifications . 101
10.4.3 Sorting of agenda items . 102

10.5 Commands in the agenda buffer . 102
10.6 Custom agenda views . 111

iv

10.6.1 Storing searches . 111
10.6.2 Block agenda . 112
10.6.3 Setting options for custom commands 112

10.7 Exporting Agenda Views . 113
10.8 Using column view in the agenda . 115

11 Markup for rich export . 117
11.1 Structural markup elements . 117
11.2 Images and Tables . 119
11.3 Literal examples . 119
11.4 Include files . 121
11.5 Index entries . 122
11.6 Macro replacement . 122
11.7 Embedded LATEX . 122

11.7.1 Special symbols . 122
11.7.2 Subscripts and superscripts . 123
11.7.3 LATEX fragments . 123
11.7.4 Previewing LATEX fragments . 124
11.7.5 Using CDLATEX to enter math . 125

12 Exporting . 126
12.1 Selective export . 126
12.2 Export options . 126
12.3 The export dispatcher . 128
12.4 ASCII/Latin-1/UTF-8 export . 128
12.5 HTML export . 129

12.5.1 HTML export commands . 129
12.5.2 HTML preamble and postamble . 130
12.5.3 Quoting HTML tags . 130
12.5.4 Links in HTML export . 131
12.5.5 Tables . 131
12.5.6 Images in HTML export . 131
12.5.7 Math formatting in HTML export . 132
12.5.8 Text areas in HTML export . 132
12.5.9 CSS support . 132
12.5.10 JavaScript supported display of web pages 133

12.6 LATEX and PDF export . 134
12.6.1 LATEX export commands . 135
12.6.2 Header and sectioning structure . 135
12.6.3 Quoting LATEX code . 136
12.6.4 Tables in LATEX export . 136
12.6.5 Images in LATEX export . 136
12.6.6 Beamer class export . 137

12.7 DocBook export . 139
12.7.1 DocBook export commands . 139
12.7.2 Quoting DocBook code . 140
12.7.3 Recursive sections . 140
12.7.4 Tables in DocBook export . 140

v

12.7.5 Images in DocBook export . 141
12.7.6 Special characters in DocBook export 141

12.8 OpenDocument Text export . 142
12.8.1 Pre-requisites for ODT export . 142
12.8.2 ODT export commands . 142
12.8.3 Extending ODT export . 142

12.8.3.1 Automatically exporting to other formats 142
12.8.3.2 Converting between document formats 143

12.8.4 Applying custom styles . 143
12.8.4.1 Applying custom styles - the easy way 143
12.8.4.2 Using third-party styles and templates 143

12.8.5 Links in ODT export . 144
12.8.6 Tables in ODT export . 144
12.8.7 Images in ODT export . 144
12.8.8 Math formatting in ODT export . 146

12.8.8.1 Working with LATEX math snippets 146
12.8.8.2 Working with MathML or OpenDocument formula files

. 147
12.8.9 Labels and captions in ODT export . 147
12.8.10 Literal examples in ODT export . 147
12.8.11 Advanced topics in ODT export . 147

12.8.11.1 Configuring a document converter 148
12.8.11.2 Working with OpenDocument style files 148
12.8.11.3 Creating one-off styles . 149
12.8.11.4 Customizing tables in ODT export 150
12.8.11.5 Validating OpenDocument XML 152

12.9 TaskJuggler export . 152
12.9.1 TaskJuggler export commands . 153
12.9.2 Tasks . 153
12.9.3 Resources . 153
12.9.4 Export of properties . 153
12.9.5 Dependencies . 153
12.9.6 Reports . 154

12.10 Freemind export . 154
12.11 XOXO export . 155
12.12 iCalendar export . 155

13 Publishing . 157
13.1 Configuration . 157

13.1.1 The variable org-publish-project-alist 157
13.1.2 Sources and destinations for files . 157
13.1.3 Selecting files . 158
13.1.4 Publishing action . 158
13.1.5 Options for the HTML/LATEX exporters 159
13.1.6 Links between published files . 160
13.1.7 Generating a sitemap . 160
13.1.8 Generating an index . 161

13.2 Uploading files . 162

vi

13.3 Sample configuration . 162
13.3.1 Example: simple publishing configuration 162
13.3.2 Example: complex publishing configuration 162

13.4 Triggering publication . 163

14 Working with source code 165
14.1 Structure of code blocks . 165
14.2 Editing source code . 166
14.3 Exporting code blocks . 166
14.4 Extracting source code . 167
14.5 Evaluating code blocks . 168
14.6 Library of Babel . 169
14.7 Languages . 169
14.8 Header arguments . 170

14.8.1 Using header arguments . 170
14.8.2 Specific header arguments . 173

14.8.2.1 :var . 173
14.8.2.2 :results . 177
14.8.2.3 :file . 178
14.8.2.4 :dir and remote execution . 179
14.8.2.5 :exports . 180
14.8.2.6 :tangle . 180
14.8.2.7 :mkdirp . 180
14.8.2.8 :comments . 180
14.8.2.9 :padline . 181
14.8.2.10 :no-expand . 181
14.8.2.11 :session . 181
14.8.2.12 :noweb . 181
14.8.2.13 :noweb-ref . 182
14.8.2.14 :noweb-sep . 183
14.8.2.15 :cache . 183
14.8.2.16 :sep . 183
14.8.2.17 :hlines . 184
14.8.2.18 :colnames . 185
14.8.2.19 :rownames . 185
14.8.2.20 :shebang . 186
14.8.2.21 :eval . 186

14.9 Results of evaluation . 186
14.9.1 Non-session . 186

14.9.1.1 :results value . 187
14.9.1.2 :results output . 187

14.9.2 Session . 187
14.9.2.1 :results value . 187
14.9.2.2 :results output . 187

14.10 Noweb reference syntax . 188
14.11 Key bindings and useful functions . 188
14.12 Batch execution . 189

vii

15 Miscellaneous . 191
15.1 Completion . 191
15.2 Easy Templates . 191
15.3 Speed keys . 192
15.4 Code evaluation and security issues . 192
15.5 Customization . 193
15.6 Summary of in-buffer settings . 193
15.7 The very busy C-c C-c key . 197
15.8 A cleaner outline view . 197
15.9 Using Org on a tty . 199
15.10 Interaction with other packages . 200

15.10.1 Packages that Org cooperates with . 200
15.10.2 Packages that lead to conflicts with Org mode 201

15.11 org-crypt.el . 202

Appendix A Hacking . 204
A.1 Hooks . 204
A.2 Add-on packages . 204
A.3 Adding hyperlink types . 204
A.4 Context-sensitive commands . 206
A.5 Tables and lists in arbitrary syntax . 206

A.5.1 Radio tables . 206
A.5.2 A LATEX example of radio tables . 207
A.5.3 Translator functions . 209
A.5.4 Radio lists . 210

A.6 Dynamic blocks . 210
A.7 Special agenda views . 211
A.8 Extracting agenda information . 213
A.9 Using the property API . 214
A.10 Using the mapping API . 216

Appendix B MobileOrg . 218
B.1 Setting up the staging area . 218
B.2 Pushing to MobileOrg . 218
B.3 Pulling from MobileOrg . 219

Appendix C History and acknowledgments
. 220

Concept index . 224

Key index . 232

Command and function index 237

Variable index . 241

Chapter 1: Introduction 1

1 Introduction

1.1 Summary

Org is a mode for keeping notes, maintaining TODO lists, and doing project planning with
a fast and effective plain-text system.

Org develops organizational tasks around NOTES files that contain lists or information
about projects as plain text. Org is implemented on top of Outline mode, which makes it
possible to keep the content of large files well structured. Visibility cycling and structure
editing help to work with the tree. Tables are easily created with a built-in table editor.
Org supports TODO items, deadlines, timestamps, and scheduling. It dynamically compiles
entries into an agenda that utilizes and smoothly integrates much of the Emacs calendar
and diary. Plain text URL-like links connect to websites, emails, Usenet messages, BBDB
entries, and any files related to the projects. For printing and sharing of notes, an Org file
can be exported as a structured ASCII file, as HTML, or (TODO and agenda items only)
as an iCalendar file. It can also serve as a publishing tool for a set of linked web pages.

As a project planning environment, Org works by adding metadata to outline nodes.
Based on this data, specific entries can be extracted in queries and create dynamic agenda
views.

Org mode contains the Org Babel environment which allows you to work with embed-
ded source code blocks in a file, to facilitate code evaluation, documentation, and literate
programming techniques.

Org’s automatic, context-sensitive table editor with spreadsheet capabilities can be inte-
grated into any major mode by activating the minor Orgtbl mode. Using a translation step,
it can be used to maintain tables in arbitrary file types, for example in LATEX. The struc-
ture editing and list creation capabilities can be used outside Org with the minor Orgstruct
mode.

Org keeps simple things simple. When first fired up, it should feel like a straightforward,
easy to use outliner. Complexity is not imposed, but a large amount of functionality is
available when you need it. Org is a toolbox and can be used in different ways and for
different ends, for example:

• an outline extension with visibility cycling and structure editing
• an ASCII system and table editor for taking structured notes
• a TODO list editor
• a full agenda and planner with deadlines and work scheduling
• an environment in which to implement David Allenfls GTD system
• a simple hypertext system, with HTML and LATEX export
• a publishing tool to create a set of interlinked webpages
• an environment for literate programming

There is a website for Org which provides links to the newest version of Org, as well as
additional information, frequently asked questions (FAQ), links to tutorials, etc. This page
is located at http://orgmode.org.

The version 7.3 of this manual is available as a paperback book from Network Theory
Ltd.

http://orgmode.org
http://www.network-theory.co.uk/org/manual/
http://www.network-theory.co.uk/org/manual/

Chapter 1: Introduction 2

1.2 Installation

Important: If you are using a version of Org that is part of the Emacs distribution or
an XEmacs package, please skip this section and go directly to Section 1.3 [Activation],
page 3. To see what version of Org (if any) is part of your Emacs distribution, type M-x

load-library RET org and then M-x org-version.

If you have downloaded Org from the Web, either as a distribution ‘.zip’ or ‘.tar’ file,
or as a Git archive, you must take the following steps to install it: go into the unpacked
Org distribution directory and edit the top section of the file ‘Makefile’. You must set
the name of the Emacs binary (likely either ‘emacs’ or ‘xemacs’), and the paths to the
directories where local Lisp and Info files are kept. If you don’t have access to the system-
wide directories, you can simply run Org directly from the distribution directory by adding
the ‘lisp’ subdirectory to the Emacs load path. To do this, add the following line to
‘.emacs’:

(setq load-path (cons "~/path/to/orgdir/lisp" load-path))

If you plan to use code from the ‘contrib’ subdirectory, do a similar step for this directory:

(setq load-path (cons "~/path/to/orgdir/contrib/lisp" load-path))

Now byte-compile the Lisp files with the shell command:

make

If you are running Org from the distribution directory, this is all. If you want to install Org
into the system directories, use (as administrator)

make install

Installing Info files is system dependent, because of differences in the ‘install-info’
program. The following should correctly install the Info files on most systems, please send
a bug report if not1.

make install-info

Then add the following line to ‘.emacs’. It is needed so that Emacs can autoload
functions that are located in files not immediately loaded when Org mode starts.

(require 'org-install)

Do not forget to activate Org as described in the following section.

1 The output from install-info (if any) is also system dependent. In particular Debian and its derivatives
use two different versions of install-info and you may see the message:

This is not dpkg install-info anymore, but GNU install-info

See the man page for ginstall-info for command line arguments

which can be safely ignored.

Chapter 1: Introduction 3

1.3 Activation

To make sure files with extension ‘.org’ use Org mode, add the following line to your
‘.emacs’ file.

(add-to-list 'auto-mode-alist '("\\.org\\'" . org-mode))

Org mode buffers need font-lock to be turned on - this is the default in Emacs1.

The four Org commands org-store-link, org-capture, org-agenda, and
org-iswitchb should be accessible through global keys (i.e. anywhere in Emacs, not just
in Org buffers). Here are suggested bindings for these keys, please modify the keys to your
own liking.

(global-set-key "\C-cl" 'org-store-link)

(global-set-key "\C-cc" 'org-capture)

(global-set-key "\C-ca" 'org-agenda)

(global-set-key "\C-cb" 'org-iswitchb)

With this setup, all files with extension ‘.org’ will be put into Org mode. As an alter-
native, make the first line of a file look like this:

MY PROJECTS -*- mode: org; -*-

which will select Org mode for this buffer no matter what the file’s name is. See also the
variable org-insert-mode-line-in-empty-file.

Many commands in Org work on the region if the region is active. To make use of this,
you need to have transient-mark-mode (zmacs-regions in XEmacs) turned on. In Emacs
23 this is the default, in Emacs 22 you need to do this yourself with

(transient-mark-mode 1)

If you do not like transient-mark-mode, you can create an active region by using the
mouse to select a region, or pressing C-SPC twice before moving the cursor.

1.4 Feedback

If you find problems with Org, or if you have questions, remarks, or ideas about it, please
mail to the Org mailing list emacs-orgmode@gnu.org. If you are not a member of the
mailing list, your mail will be passed to the list after a moderator has approved it2.

For bug reports, please first try to reproduce the bug with the latest version of Org
available—if you are running an outdated version, it is quite possible that the bug has been
fixed already. If the bug persists, prepare a report and provide as much information as
possible, including the version information of Emacs (M-x emacs-version RET) and Org
(M-x org-version RET), as well as the Org related setup in ‘.emacs’. The easiest way to
do this is to use the command

M-x org-submit-bug-report

which will put all this information into an Emacs mail buffer so that you only need to add
your description. If you re not sending the Email from within Emacs, please copy and paste
the content into your Email program.

1 If you don’t use font-lock globally, turn it on in Org buffer with (add-hook 'org-mode-hook 'turn-on-

font-lock)
2 Please consider subscribing to the mailing list, in order to minimize the work the mailing list moderators

have to do.

mailto:emacs-orgmode@gnu.org

Chapter 1: Introduction 4

Sometimes you might face a problem due to an error in your Emacs or Org mode setup.
Before reporting a bug, it is very helpful to start Emacs with minimal customizations and
reproduce the problem. Doing so often helps you determine if the problem is with your
customization or with Org mode itself. You can start a typical minimal session with a
command like the example below.

$ emacs -Q -l /path/to/minimal-org.el

However if you are using Org mode as distributed with Emacs, a minimal setup is not
necessary. In that case it is sufficient to start Emacs as emacs -Q. The minimal-org.el

setup file can have contents as shown below.

;;; Minimal setup to load latest `org-mode'

;; activate debugging

(setq debug-on-error t

debug-on-signal nil

debug-on-quit nil)

;; add latest org-mode to load path

(add-to-list 'load-path (expand-file-name "/path/to/org-mode/lisp"))

(add-to-list 'load-path (expand-file-name "/path/to/org-mode/contrib/lisp"))

;; activate org

(require 'org-install)

If an error occurs, a backtrace can be very useful (see below on how to create one). Often
a small example file helps, along with clear information about:

1. What exactly did you do?

2. What did you expect to happen?

3. What happened instead?

Thank you for helping to improve this program.

How to create a useful backtrace

If working with Org produces an error with a message you don’t understand, you may have
hit a bug. The best way to report this is by providing, in addition to what was mentioned
above, a backtrace. This is information from the built-in debugger about where and how
the error occurred. Here is how to produce a useful backtrace:

1. Reload uncompiled versions of all Org mode Lisp files. The backtrace contains much
more information if it is produced with uncompiled code. To do this, use

C-u M-x org-reload RET

or select Org -> Refresh/Reload -> Reload Org uncompiled from the menu.

2. Go to the Optionsmenu and select Enter Debugger on Error (XEmacs has this option
in the Troubleshooting sub-menu).

3. Do whatever you have to do to hit the error. Don’t forget to document the steps you
take.

4. When you hit the error, a ‘*Backtrace*’ buffer will appear on the screen. Save this
buffer to a file (for example using C-x C-w) and attach it to your bug report.

Chapter 1: Introduction 5

1.5 Typesetting conventions used in this manual

Org uses three types of keywords: TODO keywords, tags, and property names. In this
manual we use the following conventions:

TODO

WAITING TODO keywords are written with all capitals, even if they are user-defined.

boss

ARCHIVE User-defined tags are written in lowercase; built-in tags with special meaning
are written with all capitals.

Release

PRIORITY User-defined properties are capitalized; built-in properties with special meaning
are written with all capitals.

The manual lists both the keys and the corresponding commands for accessing func-
tionality. Org mode often uses the same key for different functions, depending on context.
The command that is bound to such keys has a generic name, like org-metaright. In the
manual we will, wherever possible, give the function that is internally called by the generic
command. For example, in the chapter on document structure, M-RIGHT will be listed to
call org-do-demote, while in the chapter on tables, it will be listed to call org-table-move-
column-right.

If you prefer, you can compile the manual without the command names by unsetting the
flag cmdnames in ‘org.texi’.

Chapter 2: Document structure 6

2 Document structure

Org is based on Outline mode and provides flexible commands to edit the structure of the
document.

2.1 Outlines

Org is implemented on top of Outline mode. Outlines allow a document to be organized
in a hierarchical structure, which (at least for me) is the best representation of notes and
thoughts. An overview of this structure is achieved by folding (hiding) large parts of the
document to show only the general document structure and the parts currently being worked
on. Org greatly simplifies the use of outlines by compressing the entire show/hide function-
ality into a single command, org-cycle, which is bound to the TAB key.

2.2 Headlines

Headlines define the structure of an outline tree. The headlines in Org start with one or
more stars, on the left margin1. For example:

* Top level headline

** Second level

*** 3rd level

some text

*** 3rd level

more text

* Another top level headline

Some people find the many stars too noisy and would prefer an outline that has whitespace
followed by a single star as headline starters. Section 15.8 [Clean view], page 197, describes
a setup to realize this.

An empty line after the end of a subtree is considered part of it and will be hidden when
the subtree is folded. However, if you leave at least two empty lines, one empty line will
remain visible after folding the subtree, in order to structure the collapsed view. See the
variable org-cycle-separator-lines to modify this behavior.

2.3 Visibility cycling

Outlines make it possible to hide parts of the text in the buffer. Org uses just two commands,
bound to TAB and S-TAB to change the visibility in the buffer.

TAB org-cycle

Subtree cycling : Rotate current subtree among the states

,-> FOLDED -> CHILDREN -> SUBTREE --.

'-----------------------------------'

The cursor must be on a headline for this to work2. When the cursor is at the
beginning of the buffer and the first line is not a headline, then TAB actually

1 See the variables org-special-ctrl-a/e, org-special-ctrl-k, and org-ctrl-k-protect-subtree to
configure special behavior of C-a, C-e, and C-k in headlines.

2 see, however, the option org-cycle-emulate-tab.

Chapter 2: Document structure 7

runs global cycling (see below)3. Also when called with a prefix argument (C-u
TAB), global cycling is invoked.

S-TAB org-global-cycle

C-u TAB Global cycling : Rotate the entire buffer among the states

,-> OVERVIEW -> CONTENTS -> SHOW ALL --.

'--------------------------------------'

When S-TAB is called with a numeric prefix argument N, the CONTENTS view
up to headlines of level N will be shown. Note that inside tables, S-TAB jumps
to the previous field.

C-u C-u C-u TAB show-all

Show all, including drawers.

C-c C-r org-reveal

Reveal context around point, showing the current entry, the following heading
and the hierarchy above. Useful for working near a location that has been
exposed by a sparse tree command (see Section 2.6 [Sparse trees], page 11) or
an agenda command (see Section 10.5 [Agenda commands], page 102). With a
prefix argument show, on each level, all sibling headings. With a double prefix
argument, also show the entire subtree of the parent.

C-c C-k show-branches

Expose all the headings of the subtree, CONTENT view for just one subtree.

C-c C-x b org-tree-to-indirect-buffer

Show the current subtree in an indirect buffer4. With a numeric prefix argument
N, go up to level N and then take that tree. If N is negative then go up that
many levels. With a C-u prefix, do not remove the previously used indirect
buffer.

C-c C-x v org-copy-visible

Copy the visible text in the region into the kill ring.

When Emacs first visits an Org file, the global state is set to OVERVIEW, i.e. only the
top level headlines are visible. This can be configured through the variable org-startup-

folded, or on a per-file basis by adding one of the following lines anywhere in the buffer:

#+STARTUP: overview

#+STARTUP: content

#+STARTUP: showall

#+STARTUP: showeverything

Furthermore, any entries with a ‘VISIBILITY’ property (see Chapter 7 [Properties and
Columns], page 58) will get their visibility adapted accordingly. Allowed values for this
property are folded, children, content, and all.

3 see the option org-cycle-global-at-bob.
4 The indirect buffer (see the Emacs manual for more information about indirect buffers) will contain the

entire buffer, but will be narrowed to the current tree. Editing the indirect buffer will also change the
original buffer, but without affecting visibility in that buffer.

Chapter 2: Document structure 8

C-u C-u TAB org-set-startup-visibility

Switch back to the startup visibility of the buffer, i.e. whatever is requested by
startup options and ‘VISIBILITY’ properties in individual entries.

2.4 Motion

The following commands jump to other headlines in the buffer.

C-c C-n outline-next-visible-heading

Next heading.

C-c C-p outline-previous-visible-heading

Previous heading.

C-c C-f org-forward-same-level

Next heading same level.

C-c C-b org-backward-same-level

Previous heading same level.

C-c C-u outline-up-heading

Backward to higher level heading.

C-c C-j org-goto

Jump to a different place without changing the current outline visibility. Shows
the document structure in a temporary buffer, where you can use the following
keys to find your destination:

TAB Cycle visibility.
DOWN / UP Next/previous visible headline.
RET Select this location.
/ Do a Sparse-tree search
The following keys work if you turn off org-goto-auto-isearch

n / p Next/previous visible headline.
f / b Next/previous headline same level.
u One level up.
0-9 Digit argument.
q Quit

See also the variable org-goto-interface.

2.5 Structure editing

M-RET org-insert-heading

Insert new heading with same level as current. If the cursor is in a plain list
item, a new item is created (see Section 2.7 [Plain lists], page 12). To force
creation of a new headline, use a prefix argument. When this command is used
in the middle of a line, the line is split and the rest of the line becomes the
new headline5. If the command is used at the beginning of a headline, the new
headline is created before the current line. If at the beginning of any other line,
the content of that line is made the new heading. If the command is used at the

5 If you do not want the line to be split, customize the variable org-M-RET-may-split-line.

Chapter 2: Document structure 9

end of a folded subtree (i.e. behind the ellipses at the end of a headline), then
a headline like the current one will be inserted after the end of the subtree.

C-RET org-insert-heading-respect-content

Just like M-RET, except when adding a new heading below the current heading,
the new heading is placed after the body instead of before it. This command
works from anywhere in the entry.

M-S-RET org-insert-todo-heading

Insert new TODO entry with same level as current heading. See also the vari-
able org-treat-insert-todo-heading-as-state-change.

C-S-RET org-insert-todo-heading-respect-content

Insert new TODO entry with same level as current heading. Like C-RET, the
new headline will be inserted after the current subtree.

TAB org-cycle

In a new entry with no text yet, the first TAB demotes the entry to become a
child of the previous one. The next TAB makes it a parent, and so on, all the
way to top level. Yet another TAB, and you are back to the initial level.

M-LEFT org-do-promote

Promote current heading by one level.

M-RIGHT org-do-demote

Demote current heading by one level.

M-S-LEFT org-promote-subtree

Promote the current subtree by one level.

M-S-RIGHT org-demote-subtree

Demote the current subtree by one level.

M-S-UP org-move-subtree-up

Move subtree up (swap with previous subtree of same level).

M-S-DOWN org-move-subtree-down

Move subtree down (swap with next subtree of same level).

C-c C-x C-w org-cut-subtree

Kill subtree, i.e. remove it from buffer but save in kill ring. With a numeric
prefix argument N, kill N sequential subtrees.

C-c C-x M-w org-copy-subtree

Copy subtree to kill ring. With a numeric prefix argument N, copy the N
sequential subtrees.

C-c C-x C-y org-paste-subtree

Yank subtree from kill ring. This does modify the level of the subtree to make
sure the tree fits in nicely at the yank position. The yank level can also be
specified with a numeric prefix argument, or by yanking after a headline marker
like ‘****’.

C-y org-yank

Depending on the variables org-yank-adjusted-subtrees and org-yank-

folded-subtrees, Org’s internal yank command will paste subtrees folded

Chapter 2: Document structure 10

and in a clever way, using the same command as C-c C-x C-y. With the
default settings, no level adjustment will take place, but the yanked tree will
be folded unless doing so would swallow text previously visible. Any prefix
argument to this command will force a normal yank to be executed, with the
prefix passed along. A good way to force a normal yank is C-u C-y. If you
use yank-pop after a yank, it will yank previous kill items plainly, without
adjustment and folding.

C-c C-x c org-clone-subtree-with-time-shift

Clone a subtree by making a number of sibling copies of it. You will be prompted
for the number of copies to make, and you can also specify if any timestamps
in the entry should be shifted. This can be useful, for example, to create a
number of tasks related to a series of lectures to prepare. For more details, see
the docstring of the command org-clone-subtree-with-time-shift.

C-c C-w org-refile

Refile entry or region to a different location. See Section 9.5 [Refiling notes],
page 89.

C-c ^ org-sort-entries-or-items

Sort same-level entries. When there is an active region, all entries in the region
will be sorted. Otherwise the children of the current headline are sorted. The
command prompts for the sorting method, which can be alphabetically, numer-
ically, by time (first timestamp with active preferred, creation time, scheduled
time, deadline time), by priority, by TODO keyword (in the sequence the key-
words have been defined in the setup) or by the value of a property. Reverse
sorting is possible as well. You can also supply your own function to extract
the sorting key. With a C-u prefix, sorting will be case-sensitive.

C-x n s org-narrow-to-subtree

Narrow buffer to current subtree.

C-x n b org-narrow-to-block

Narrow buffer to current block.

C-x n w widen

Widen buffer to remove narrowing.

C-c * org-toggle-heading

Turn a normal line or plain list item into a headline (so that it becomes a
subheading at its location). Also turn a headline into a normal line by removing
the stars. If there is an active region, turn all lines in the region into headlines.
If the first line in the region was an item, turn only the item lines into headlines.
Finally, if the first line is a headline, remove the stars from all headlines in the
region.

When there is an active region (Transient Mark mode), promotion and demotion work
on all headlines in the region. To select a region of headlines, it is best to place both point
and mark at the beginning of a line, mark at the beginning of the first headline, and point
at the line just after the last headline to change. Note that when the cursor is inside a table
(see Chapter 3 [Tables], page 18), the Meta-Cursor keys have different functionality.

Chapter 2: Document structure 11

2.6 Sparse trees

An important feature of Org mode is the ability to construct sparse trees for selected
information in an outline tree, so that the entire document is folded as much as possible,
but the selected information is made visible along with the headline structure above it6.
Just try it out and you will see immediately how it works.

Org mode contains several commands creating such trees, all these commands can be
accessed through a dispatcher:

C-c / org-sparse-tree

This prompts for an extra key to select a sparse-tree creating command.

C-c / r org-occur

Prompts for a regexp and shows a sparse tree with all matches. If the match
is in a headline, the headline is made visible. If the match is in the body
of an entry, headline and body are made visible. In order to provide minimal
context, also the full hierarchy of headlines above the match is shown, as well as
the headline following the match. Each match is also highlighted; the highlights
disappear when the buffer is changed by an editing command7, or by pressing
C-c C-c. When called with a C-u prefix argument, previous highlights are kept,
so several calls to this command can be stacked.

M-g n or M-g M-n next-error

Jump to the next sparse tree match in this buffer.

M-g p or M-g M-p previous-error

Jump to the previous sparse tree match in this buffer.

For frequently used sparse trees of specific search strings, you can use the variable org-

agenda-custom-commands to define fast keyboard access to specific sparse trees. These
commands will then be accessible through the agenda dispatcher (see Section 10.2 [Agenda
dispatcher], page 93). For example:

(setq org-agenda-custom-commands

'(("f" occur-tree "FIXME")))

will define the key C-c a f as a shortcut for creating a sparse tree matching the string
‘FIXME’.

The other sparse tree commands select headings based on TODO keywords, tags, or
properties and will be discussed later in this manual.

To print a sparse tree, you can use the Emacs command ps-print-buffer-with-faces

which does not print invisible parts of the document8. Or you can use the command C-c

C-e v to export only the visible part of the document and print the resulting file.

6 See also the variables org-show-hierarchy-above, org-show-following-heading, org-show-siblings,
and org-show-entry-below for detailed control on how much context is shown around each match.

7 This depends on the option org-remove-highlights-with-change
8 This does not work under XEmacs, because XEmacs uses selective display for outlining, not text

properties.

Chapter 2: Document structure 12

2.7 Plain lists

Within an entry of the outline tree, hand-formatted lists can provide additional structure.
They also provide a way to create lists of checkboxes (see Section 5.6 [Checkboxes], page 51).
Org supports editing such lists, and every exporter (see Chapter 12 [Exporting], page 126)
can parse and format them.

Org knows ordered lists, unordered lists, and description lists.

• Unordered list items start with ‘-’, ‘+’, or ‘*’9 as bullets.

• Ordered list items start with a numeral followed by either a period or a right parenthe-
sis10, such as ‘1.’ or ‘1)’11. If you want a list to start with a different value (e.g. 20),
start the text of the item with [@20]12. Those constructs can be used in any item of
the list in order to enforce a particular numbering.

• Description list items are unordered list items, and contain the separator ‘ :: ’ to
distinguish the description term from the description.

Items belonging to the same list must have the same indentation on the first line. In
particular, if an ordered list reaches number ‘10.’, then the 2–digit numbers must be written
left-aligned with the other numbers in the list. An item ends before the next line that is
less or equally indented than its bullet/number.

A list ends whenever every item has ended, which means before any line less or equally
indented than items at top level. It also ends before two blank lines13. In that case, all
items are closed. Here is an example:

** Lord of the Rings

My favorite scenes are (in this order)

1. The attack of the Rohirrim

2. Eowyn's fight with the witch king

+ this was already my favorite scene in the book

+ I really like Miranda Otto.

3. Peter Jackson being shot by Legolas

- on DVD only

He makes a really funny face when it happens.

But in the end, no individual scenes matter but the film as a whole.

Important actors in this film are:

- Elijah Wood :: He plays Frodo

- Sean Austin :: He plays Sam, Frodo's friend. I still remember

him very well from his role as Mikey Walsh in The Goonies.

9 When using ‘*’ as a bullet, lines must be indented or they will be seen as top-level headlines. Also, when
you are hiding leading stars to get a clean outline view, plain list items starting with a star may be hard
to distinguish from true headlines. In short: even though ‘*’ is supported, it may be better to not use it
for plain list items.

10 You can filter out any of them by configuring org-plain-list-ordered-item-terminator.
11 You can also get ‘a.’, ‘A.’, ‘a)’ and ‘A)’ by configuring org-alphabetical-lists. To minimize confusion

with normal text, those are limited to one character only. Beyond that limit, bullets will automatically
fallback to numbers.

12 If there’s a checkbox in the item, the cookie must be put before the checkbox. If you have activated
alphabetical lists, you can also use counters like [@b].

13 See also org-empty-line-terminates-plain-lists.

Chapter 2: Document structure 13

Org supports these lists by tuning filling and wrapping commands to deal with them
correctly14, and by exporting them properly (see Chapter 12 [Exporting], page 126). Since
indentation is what governs the structure of these lists, many structural constructs like
#+BEGIN_... blocks can be indented to signal that they belong to a particular item.

If you find that using a different bullet for a sub-list (than that used for the current
list-level) improves readability, customize the variable org-list-demote-modify-bullet.
To get a greater difference of indentation between items and theirs sub-items, customize
org-list-indent-offset.

The following commands act on items when the cursor is in the first line of an item (the
line with the bullet or number). Some of them imply the application of automatic rules to
keep list structure intact. If some of these actions get in your way, configure org-list-

automatic-rules to disable them individually.

TAB org-cycle

Items can be folded just like headline levels. Normally this works only if the
cursor is on a plain list item. For more details, see the variable org-cycle-

include-plain-lists. If this variable is set to integrate, plain list items
will be treated like low-level headlines. The level of an item is then given by
the indentation of the bullet/number. Items are always subordinate to real
headlines, however; the hierarchies remain completely separated. In a new item
with no text yet, the first TAB demotes the item to become a child of the
previous one. Subsequent TABs move the item to meaningful levels in the list
and eventually get it back to its initial position.

M-RET org-insert-heading

Insert new item at current level. With a prefix argument, force a new heading
(see Section 2.5 [Structure editing], page 8). If this command is used in the
middle of an item, that item is split in two, and the second part becomes the
new item15. If this command is executed before item’s body, the new item is
created before the current one.

M-S-RET Insert a new item with a checkbox (see Section 5.6 [Checkboxes], page 51).

S-up

S-down Jump to the previous/next item in the current list16, but only if org-support-
shift-select is off. If not, you can still use paragraph jumping commands
like C-UP and C-DOWN to quite similar effect.

M-up

M-down Move the item including subitems up/down17 (swap with previous/next item
of same indentation). If the list is ordered, renumbering is automatic.

M-left

M-right Decrease/increase the indentation of an item, leaving children alone.

14 Org only changes the filling settings for Emacs. For XEmacs, you should use Kyle E. Jones’
‘filladapt.el’. To turn this on, put into ‘.emacs’: (require 'filladapt)

15 If you do not want the item to be split, customize the variable org-M-RET-may-split-line.
16 If you want to cycle around items that way, you may customize org-list-use-circular-motion.
17 See org-liste-use-circular-motion for a cyclic behavior.

Chapter 2: Document structure 14

M-S-left

M-S-right

Decrease/increase the indentation of the item, including subitems. Initially, the
item tree is selected based on current indentation. When these commands are
executed several times in direct succession, the initially selected region is used,
even if the new indentation would imply a different hierarchy. To use the new
hierarchy, break the command chain with a cursor motion or so.

As a special case, using this command on the very first item of a list will
move the whole list. This behavior can be disabled by configuring org-list-

automatic-rules. The global indentation of a list has no influence on the text
after the list.

C-c C-c If there is a checkbox (see Section 5.6 [Checkboxes], page 51) in the item line,
toggle the state of the checkbox. In any case, verify bullets and indentation
consistency in the whole list.

C-c - Cycle the entire list level through the different itemize/enumerate bullets (‘-’,
‘+’, ‘*’, ‘1.’, ‘1)’) or a subset of them, depending on org-plain-list-ordered-

item-terminator, the type of list, and its position18. With a numeric prefix
argument N, select the Nth bullet from this list. If there is an active region
when calling this, selected text will be changed into an item. With a prefix
argument, all lines will be converted to list items. If the first line already was a
list item, any item marker will be removed from the list. Finally, even without
an active region, a normal line will be converted into a list item.

C-c * Turn a plain list item into a headline (so that it becomes a subheading at its
location). See Section 2.5 [Structure editing], page 8, for a detailed explanation.

C-c C-* Turn the whole plain list into a subtree of the current heading. Checkboxes (see
Section 5.6 [Checkboxes], page 51) will become TODO (resp. DONE) keywords
when unchecked (resp. checked).

S-left/right

This command also cycles bullet styles when the cursor in on the bullet or
anywhere in an item line, details depending on org-support-shift-select.

C-c ^ Sort the plain list. You will be prompted for the sorting method: numerically,
alphabetically, by time, or by custom function.

2.8 Drawers

Sometimes you want to keep information associated with an entry, but you normally don’t
want to see it. For this, Org mode has drawers. Drawers need to be configured with the
variable org-drawers19. Drawers look like this:

** This is a headline

Still outside the drawer

18 See bullet rule in org-list-automatic-rules for more information.
19 You can define drawers on a per-file basis with a line like #+DRAWERS: HIDDEN PROPERTIES STATE

Chapter 2: Document structure 15

:DRAWERNAME:

This is inside the drawer.

:END:

After the drawer.

Visibility cycling (see Section 2.3 [Visibility cycling], page 6) on the headline will hide
and show the entry, but keep the drawer collapsed to a single line. In order to look inside
the drawer, you need to move the cursor to the drawer line and press TAB there. Org
mode uses the PROPERTIES drawer for storing properties (see Chapter 7 [Properties and
Columns], page 58), and you can also arrange for state change notes (see Section 5.3.2
[Tracking TODO state changes], page 47) and clock times (see Section 8.4 [Clocking work
time], page 74) to be stored in a drawer LOGBOOK. If you want to store a quick note in the
LOGBOOK drawer, in a similar way to state changes, use

C-c C-z Add a time-stamped note to the LOGBOOK drawer.

2.9 Blocks

Org mode uses begin...end blocks for various purposes from including source code examples
(see Section 11.3 [Literal examples], page 119) to capturing time logging information (see
Section 8.4 [Clocking work time], page 74). These blocks can be folded and unfolded by
pressing TAB in the begin line. You can also get all blocks folded at startup by configuring
the variable org-hide-block-startup or on a per-file basis by using

#+STARTUP: hideblocks

#+STARTUP: nohideblocks

2.10 Footnotes

Org mode supports the creation of footnotes. In contrast to the ‘footnote.el’ package,
Org mode’s footnotes are designed for work on a larger document, not only for one-off
documents like emails. The basic syntax is similar to the one used by ‘footnote.el’, i.e. a
footnote is defined in a paragraph that is started by a footnote marker in square brackets in
column 0, no indentation allowed. If you need a paragraph break inside a footnote, use the
LATEX idiom ‘\par’. The footnote reference is simply the marker in square brackets, inside
text. For example:

The Org homepage[fn:1] now looks a lot better than it used to.

...

[fn:1] The link is: http://orgmode.org

Org mode extends the number-based syntax to named footnotes and optional inline def-
inition. Using plain numbers as markers (as ‘footnote.el’ does) is supported for backward
compatibility, but not encouraged because of possible conflicts with LATEX snippets (see
Section 11.7 [Embedded LATEX], page 122). Here are the valid references:

[1] A plain numeric footnote marker. Compatible with ‘footnote.el’, but not rec-
ommended because something like ‘[1]’ could easily be part of a code snippet.

[fn:name]

A named footnote reference, where name is a unique label word, or, for simplicity
of automatic creation, a number.

Chapter 2: Document structure 16

[fn:: This is the inline definition of this footnote]

A LATEX-like anonymous footnote where the definition is given directly at the
reference point.

[fn:name: a definition]

An inline definition of a footnote, which also specifies a name for the note. Since
Org allows multiple references to the same note, you can then use [fn:name]

to create additional references.

Footnote labels can be created automatically, or you can create names yourself. This
is handled by the variable org-footnote-auto-label and its corresponding #+STARTUP

keywords. See the docstring of that variable for details.

The following command handles footnotes:

C-c C-x f The footnote action command.

When the cursor is on a footnote reference, jump to the definition. When it is
at a definition, jump to the (first) reference.

Otherwise, create a new footnote. Depending on the variable org-footnote-

define-inline20, the definition will be placed right into the text as part of
the reference, or separately into the location determined by the variable org-

footnote-section.

When this command is called with a prefix argument, a menu of additional
options is offered:

s Sort the footnote definitions by reference sequence. During editing,
Org makes no effort to sort footnote definitions into a particular
sequence. If you want them sorted, use this command, which will
also move entries according to org-footnote-section. Automatic
sorting after each insertion/deletion can be configured using the
variable org-footnote-auto-adjust.

r Renumber the simple fn:N footnotes. Automatic renumbering
after each insertion/deletion can be configured using the variable
org-footnote-auto-adjust.

S Short for first r, then s action.
n Normalize the footnotes by collecting all definitions (including

inline definitions) into a special section, and then numbering them
in sequence. The references will then also be numbers. This is
meant to be the final step before finishing a document (e.g. sending
off an email). The exporters do this automatically, and so could
something like message-send-hook.

d Delete the footnote at point, and all definitions of and references
to it.

Depending on the variable org-footnote-auto-adjust21, renumbering and
sorting footnotes can be automatic after each insertion or deletion.

20 The corresponding in-buffer setting is: #+STARTUP: fninline or #+STARTUP: nofninline
21 the corresponding in-buffer options are fnadjust and nofnadjust.

Chapter 2: Document structure 17

C-c C-c If the cursor is on a footnote reference, jump to the definition. If it is a the
definition, jump back to the reference. When called at a footnote location with
a prefix argument, offer the same menu as C-c C-x f.

C-c C-o or mouse-1/2
Footnote labels are also links to the corresponding definition/reference, and you
can use the usual commands to follow these links.

2.11 The Orgstruct minor mode

If you like the intuitive way the Org mode structure editing and list formatting works,
you might want to use these commands in other modes like Text mode or Mail mode as
well. The minor mode orgstruct-mode makes this possible. Toggle the mode with M-x

orgstruct-mode, or turn it on by default, for example in Message mode, with one of:

(add-hook 'message-mode-hook 'turn-on-orgstruct)

(add-hook 'message-mode-hook 'turn-on-orgstruct++)

When this mode is active and the cursor is on a line that looks to Org like a headline
or the first line of a list item, most structure editing commands will work, even if the same
keys normally have different functionality in the major mode you are using. If the cursor
is not in one of those special lines, Orgstruct mode lurks silently in the shadows. When
you use orgstruct++-mode, Org will also export indentation and autofill settings into that
mode, and detect item context after the first line of an item.

Chapter 3: Tables 18

3 Tables

Org comes with a fast and intuitive table editor. Spreadsheet-like calculations are supported
using the Emacs ‘calc’ package (see Section “Top” in Gnu Emacs Calculator Manual).

3.1 The built-in table editor

Org makes it easy to format tables in plain ASCII. Any line with ‘|’ as the first non-
whitespace character is considered part of a table. ‘|’ is also the column separator1. A
table might look like this:

| Name | Phone | Age |

|-------+-------+-----|

| Peter | 1234 | 17 |

| Anna | 4321 | 25 |

A table is re-aligned automatically each time you press TAB or RET or C-c C-c inside
the table. TAB also moves to the next field (RET to the next row) and creates new table
rows at the end of the table or before horizontal lines. The indentation of the table is set
by the first line. Any line starting with ‘|-’ is considered as a horizontal separator line
and will be expanded on the next re-align to span the whole table width. So, to create the
above table, you would only type

|Name|Phone|Age|

|-

and then press TAB to align the table and start filling in fields. Even faster would be to
type |Name|Phone|Age followed by C-c RET.

When typing text into a field, Org treats DEL, BACKSPACE, and all character keys in
a special way, so that inserting and deleting avoids shifting other fields. Also, when typing
immediately after the cursor was moved into a new field with TAB, S-TAB or RET, the field
is automatically made blank. If this behavior is too unpredictable for you, configure the
variables org-enable-table-editor and org-table-auto-blank-field.

Creation and conversion
C-c | org-table-create-or-convert-from-region

Convert the active region to table. If every line contains at least one TAB
character, the function assumes that the material is tab separated. If every line
contains a comma, comma-separated values (CSV) are assumed. If not, lines are
split at whitespace into fields. You can use a prefix argument to force a specific
separator: C-u forces CSV, C-u C-u forces TAB, and a numeric argument N
indicates that at least N consecutive spaces, or alternatively a TAB will be the
separator.
If there is no active region, this command creates an empty Org table. But it
is easier just to start typing, like |Name|Phone|Age RET |- TAB.

Re-aligning and field motion
C-c C-c org-table-align

Re-align the table without moving the cursor.

1 To insert a vertical bar into a table field, use \vert or, inside a word abc\vert{}def.

Chapter 3: Tables 19

<TAB> org-table-next-field

Re-align the table, move to the next field. Creates a new row if necessary.

S-TAB org-table-previous-field

Re-align, move to previous field.

RET org-table-next-row

Re-align the table and move down to next row. Creates a new row if necessary.
At the beginning or end of a line, RET still does NEWLINE, so it can be used
to split a table.

M-a org-table-beginning-of-field

Move to beginning of the current table field, or on to the previous field.

M-e org-table-end-of-field

Move to end of the current table field, or on to the next field.

Column and row editing
M-LEFT org-table-move-column-left

M-RIGHT org-table-move-column-right

Move the current column left/right.

M-S-LEFT org-table-delete-column

Kill the current column.

M-S-RIGHT org-table-insert-column

Insert a new column to the left of the cursor position.

M-UP org-table-move-row-up

M-DOWN org-table-move-row-down

Move the current row up/down.

M-S-UP org-table-kill-row

Kill the current row or horizontal line.

M-S-DOWN org-table-insert-row

Insert a new row above the current row. With a prefix argument, the line is
created below the current one.

C-c - org-table-insert-hline

Insert a horizontal line below current row. With a prefix argument, the line is
created above the current line.

C-c RET org-table-hline-and-move

Insert a horizontal line below current row, and move the cursor into the row
below that line.

C-c ^ org-table-sort-lines

Sort the table lines in the region. The position of point indicates the column
to be used for sorting, and the range of lines is the range between the nearest
horizontal separator lines, or the entire table. If point is before the first column,
you will be prompted for the sorting column. If there is an active region, the
mark specifies the first line and the sorting column, while point should be in
the last line to be included into the sorting. The command prompts for the

Chapter 3: Tables 20

sorting type (alphabetically, numerically, or by time). When called with a
prefix argument, alphabetic sorting will be case-sensitive.

Regions

C-c C-x M-w org-table-copy-region

Copy a rectangular region from a table to a special clipboard. Point and mark
determine edge fields of the rectangle. If there is no active region, copy just the
current field. The process ignores horizontal separator lines.

C-c C-x C-w org-table-cut-region

Copy a rectangular region from a table to a special clipboard, and blank all
fields in the rectangle. So this is the “cut” operation.

C-c C-x C-y org-table-paste-rectangle

Paste a rectangular region into a table. The upper left corner ends up in the
current field. All involved fields will be overwritten. If the rectangle does not
fit into the present table, the table is enlarged as needed. The process ignores
horizontal separator lines.

M-RET org-table-wrap-region

Split the current field at the cursor position and move the rest to the line below.
If there is an active region, and both point and mark are in the same column,
the text in the column is wrapped to minimum width for the given number of
lines. A numeric prefix argument may be used to change the number of desired
lines. If there is no region, but you specify a prefix argument, the current field
is made blank, and the content is appended to the field above.

Calculations
C-c + org-table-sum

Sum the numbers in the current column, or in the rectangle defined by the
active region. The result is shown in the echo area and can be inserted with
C-y.

S-RET org-table-copy-down

When current field is empty, copy from first non-empty field above. When
not empty, copy current field down to next row and move cursor along with it.
Depending on the variable org-table-copy-increment, integer field values will
be incremented during copy. Integers that are too large will not be incremented.
Also, a 0 prefix argument temporarily disables the increment. This key is
also used by shift-selection and related modes (see Section 15.10.2 [Conflicts],
page 201).

Miscellaneous
C-c ‘ org-table-edit-field

Edit the current field in a separate window. This is useful for fields that are not
fully visible (see Section 3.2 [Column width and alignment], page 21). When
called with a C-u prefix, just make the full field visible, so that it can be edited
in place. When called with two C-u prefixes, make the editor window follow the
cursor through the table and always show the current field. The follow mode
exits automatically when the cursor leaves the table, or when you repeat this
command with C-u C-u C-c ‘.

Chapter 3: Tables 21

M-x org-table-import

Import a file as a table. The table should be TAB or whitespace separated. Use,
for example, to import a spreadsheet table or data from a database, because
these programs generally can write TAB-separated text files. This command
works by inserting the file into the buffer and then converting the region to
a table. Any prefix argument is passed on to the converter, which uses it to
determine the separator.

C-c | org-table-create-or-convert-from-region

Tables can also be imported by pasting tabular text into the Org buffer, se-
lecting the pasted text with C-x C-x and then using the C-c | command (see
above under Creation and conversion).

M-x org-table-export

Export the table, by default as a TAB-separated file. Use for data exchange
with, for example, spreadsheet or database programs. The format used to
export the file can be configured in the variable org-table-export-default-
format. You may also use properties TABLE_EXPORT_FILE and TABLE_EXPORT_

FORMAT to specify the file name and the format for table export in a subtree. Org
supports quite general formats for exported tables. The exporter format is the
same as the format used by Orgtbl radio tables, see Section A.5.3 [Translator
functions], page 209, for a detailed description.

If you don’t like the automatic table editor because it gets in your way on lines which
you would like to start with ‘|’, you can turn it off with

(setq org-enable-table-editor nil)

Then the only table command that still works is C-c C-c to do a manual re-align.

3.2 Column width and alignment

The width of columns is automatically determined by the table editor. And also the align-
ment of a column is determined automatically from the fraction of number-like versus
non-number fields in the column.

Sometimes a single field or a few fields need to carry more text, leading to inconveniently
wide columns. Or maybe you want to make a table with several columns having a fixed
width, regardless of content. To set2 the width of a column, one field anywhere in the
column may contain just the string ‘<N>’ where ‘N’ is an integer specifying the width of the
column in characters. The next re-align will then set the width of this column to this value.

|---+------------------------------| |---+--------|

| | | | | <6> |

| 1 | one | | 1 | one |

| 2 | two | ----\ | 2 | two |

| 3 | This is a long chunk of text | ----/ | 3 | This=> |

| 4 | four | | 4 | four |

|---+------------------------------| |---+--------|

Fields that are wider become clipped and end in the string ‘=>’. Note that the full text
is still in the buffer but is hidden. To see the full text, hold the mouse over the field—a

2 This feature does not work on XEmacs.

Chapter 3: Tables 22

tool-tip window will show the full content. To edit such a field, use the command C-c ‘

(that is C-c followed by the backquote). This will open a new window with the full field.
Edit it and finish with C-c C-c.

When visiting a file containing a table with narrowed columns, the necessary character
hiding has not yet happened, and the table needs to be aligned before it looks nice. Setting
the option org-startup-align-all-tables will realign all tables in a file upon visiting,
but also slow down startup. You can also set this option on a per-file basis with:

#+STARTUP: align

#+STARTUP: noalign

If you would like to overrule the automatic alignment of number-rich columns to the
right and of string-rich column to the left, you can use ‘<r>’, ‘c’3 or ‘<l>’ in a similar
fashion. You may also combine alignment and field width like this: ‘<l10>’.

Lines which only contain these formatting cookies will be removed automatically when
exporting the document.

3.3 Column groups

When Org exports tables, it does so by default without vertical lines because that is visually
more satisfying in general. Occasionally however, vertical lines can be useful to structure a
table into groups of columns, much like horizontal lines can do for groups of rows. In order
to specify column groups, you can use a special row where the first field contains only ‘/’.
The further fields can either contain ‘<’ to indicate that this column should start a group,
‘>’ to indicate the end of a column, or ‘<>’ (no space between ‘<’ and ‘>’) to make a column
a group of its own. Boundaries between column groups will upon export be marked with
vertical lines. Here is an example:

| N | N^2 | N^3 | N^4 | sqrt(n) | sqrt[4](N) |

|---+-----+-----+-----+---------+------------|

| / | < | | > | < | > |

| 1 | 1 | 1 | 1 | 1 | 1 |

| 2 | 4 | 8 | 16 | 1.4142 | 1.1892 |

| 3 | 9 | 27 | 81 | 1.7321 | 1.3161 |

|---+-----+-----+-----+---------+------------|

#+TBLFM: $2=$1^2::$3=$1^3::$4=$1^4::$5=sqrt($1)::$6=sqrt(sqrt(($1)))

It is also sufficient to just insert the column group starters after every vertical line you
would like to have:

| N | N^2 | N^3 | N^4 | sqrt(n) | sqrt[4](N) |

|----+-----+-----+-----+---------+------------|

| / | < | | | < | |

3.4 The Orgtbl minor mode

If you like the intuitive way the Org table editor works, you might also want to use it
in other modes like Text mode or Mail mode. The minor mode Orgtbl mode makes this
possible. You can always toggle the mode with M-x orgtbl-mode. To turn it on by default,
for example in Message mode, use

3 Centering does not work inside Emacs, but it does have an effect when exporting to HTML.

Chapter 3: Tables 23

(add-hook 'message-mode-hook 'turn-on-orgtbl)

Furthermore, with some special setup, it is possible to maintain tables in arbitrary
syntax with Orgtbl mode. For example, it is possible to construct LATEX tables with the
underlying ease and power of Orgtbl mode, including spreadsheet capabilities. For details,
see Section A.5 [Tables in arbitrary syntax], page 206.

3.5 The spreadsheet

The table editor makes use of the Emacs ‘calc’ package to implement spreadsheet-like
capabilities. It can also evaluate Emacs Lisp forms to derive fields from other fields. While
fully featured, Org’s implementation is not identical to other spreadsheets. For example,
Org knows the concept of a column formula that will be applied to all non-header fields
in a column without having to copy the formula to each relevant field. There is also a
formula debugger, and a formula editor with features for highlighting fields in the table
corresponding to the references at the point in the formula, moving these references by
arrow keys

3.5.1 References

To compute fields in the table from other fields, formulas must reference other fields or
ranges. In Org, fields can be referenced by name, by absolute coordinates, and by relative
coordinates. To find out what the coordinates of a field are, press C-c ? in that field, or
press C-c } to toggle the display of a grid.

Field references

Formulas can reference the value of another field in two ways. Like in any other spreadsheet,
you may reference fields with a letter/number combination like B3, meaning the 2nd field in
the 3rd row. However, Org prefers4 to use another, more general representation that looks
like this:

@row$column

Column specifications can be absolute like $1, $2,...$N , or relative to the current column
(i.e. the column of the field which is being computed) like $+1 or $-2. $< and $> are
immutable references to the first and last column, respectively, and you can use $>>> to
indicate the third column from the right.

The row specification only counts data lines and ignores horizontal separator lines
(hlines). Like with columns, you can use absolute row numbers @1, @2,...@N , and row
numbers relative to the current row like @+3 or @-1. @< and @> are immutable references
the first and last5 row in the table, respectively. You may also specify the row relative to
one of the hlines: @I refers to the first hline, @II to the second, etc. @-I refers to the first
such line above the current line, @+I to the first such line below the current line. You can
also write @III+2 which is the second data line after the third hline in the table.

4 Org will understand references typed by the user as ‘B4’, but it will not use this syntax when offering
a formula for editing. You can customize this behavior using the variable org-table-use-standard-

references.
5 For backward compatibility you can also use special names like $LR5 and $LR12 to refer in a stable way

to the 5th and 12th field in the last row of the table. However, this syntax is deprecated, it should not
be used for new documents. Use @>$ instead.

Chapter 3: Tables 24

@0 and $0 refer to the current row and column, respectively, i.e. to the row/column
for the field being computed. Also, if you omit either the column or the row part of the
reference, the current row/column is implied.

Org’s references with unsigned numbers are fixed references in the sense that if you use
the same reference in the formula for two different fields, the same field will be referenced
each time. Org’s references with signed numbers are floating references because the same
reference operator can reference different fields depending on the field being calculated by
the formula.

Here are a few examples:

@2$3 2nd row, 3rd column (same as C2)
$5 column 5 in the current row (same as E&)
@2 current column, row 2
@-1$-3 the field one row up, three columns to the left
@-I$2 field just under hline above current row, column 2
@>$5 field in the last row, in column 5

Range references

You may reference a rectangular range of fields by specifying two field references connected
by two dots ‘..’. If both fields are in the current row, you may simply use ‘$2..$7’, but
if at least one field is in a different row, you need to use the general @row$column format
at least for the first field (i.e the reference must start with ‘@’ in order to be interpreted
correctly). Examples:

$1..$3 first three fields in the current row
$P..$Q range, using column names (see under Advanced)
$<<<..$>> start in third column, continue to the one but last
@2$1..@4$3 6 fields between these two fields (same as A2..C4)
@-1$-2..@-1 3 numbers from the column to the left, 2 up to current row
@I..II between first and second hline, short for @I..@II

Range references return a vector of values that can be fed into Calc vector functions. Empty
fields in ranges are normally suppressed, so that the vector contains only the non-empty
fields (but see the ‘E’ mode switch below). If there are no non-empty fields, ‘[0]’ is returned
to avoid syntax errors in formulas.

Field coordinates in formulas

For Calc formulas and Lisp formulas @# and $# can be used to get the row or column
number of the field where the formula result goes. The traditional Lisp formula equivalents
are org-table-current-dline and org-table-current-column. Examples:

if(@# % 2, $#, string("")) column number on odd lines only
$3 = remote(FOO, @@#$2) copy column 2 from table FOO into

column 3 of the current table

For the second example, table FOO must have at least as many rows as the current table.
Note that this is inefficient6 for large number of rows.

6 The computation time scales as O(N^2) because table FOO is parsed for each field to be copied.

Chapter 3: Tables 25

Named references

‘$name’ is interpreted as the name of a column, parameter or constant. Constants are
defined globally through the variable org-table-formula-constants, and locally (for the
file) through a line like

#+CONSTANTS: c=299792458. pi=3.14 eps=2.4e-6

Also properties (see Chapter 7 [Properties and Columns], page 58) can be used as constants
in table formulas: for a property ‘:Xyz:’ use the name ‘$PROP_Xyz’, and the property
will be searched in the current outline entry and in the hierarchy above it. If you have
the ‘constants.el’ package, it will also be used to resolve constants, including natural
constants like ‘$h’ for Planck’s constant, and units like ‘$km’ for kilometers7. Column
names and parameters can be specified in special table lines. These are described below,
see Section 3.5.9 [Advanced features], page 30. All names must start with a letter, and
further consist of letters and numbers.

Remote references

You may also reference constants, fields and ranges from a different table, either in the
current file or even in a different file. The syntax is

remote(NAME-OR-ID,REF)

where NAME can be the name of a table in the current file as set by a #+TBLNAME: NAME line
before the table. It can also be the ID of an entry, even in a different file, and the reference
then refers to the first table in that entry. REF is an absolute field or range reference as
described above for example @3$3 or $somename, valid in the referenced table.

3.5.2 Formula syntax for Calc

A formula can be any algebraic expression understood by the Emacs ‘Calc’ package. Note
that ‘calc’ has the non-standard convention that ‘/’ has lower precedence than ‘*’, so that
‘a/b*c’ is interpreted as ‘a/(b*c)’. Before evaluation by calc-eval (see Section “Calling
Calc from Your Lisp Programs” in GNU Emacs Calc Manual), variable substitution takes
place according to the rules described above. The range vectors can be directly fed into the
Calc vector functions like ‘vmean’ and ‘vsum’.

A formula can contain an optional mode string after a semicolon. This string consists
of flags to influence Calc and other modes during execution. By default, Org uses the
standard Calc modes (precision 12, angular units degrees, fraction and symbolic modes
off). The display format, however, has been changed to (float 8) to keep tables compact.
The default settings can be configured using the variable org-calc-default-modes.

p20 set the internal Calc calculation precision to 20 digits
n3 s3 e2 f4 Normal, scientific, engineering, or fixed

format of the result of Calc passed back to Org.
Calc formatting is unlimited in precision as
long as the Calc calculation precision is greater.

D R angle modes: degrees, radians

7 ‘constants.el’ can supply the values of constants in two different unit systems, SI and cgs. Which
one is used depends on the value of the variable constants-unit-system. You can use the #+STARTUP

options constSI and constcgs to set this value for the current buffer.

Chapter 3: Tables 26

F S fraction and symbolic modes
N interpret all fields as numbers, use 0 for non-numbers
E keep empty fields in ranges
L literal

Unless you use large integer numbers or high-precision-calculation and -display for floating
point numbers you may alternatively provide a printf format specifier to reformat the
Calc result after it has been passed back to Org instead of letting Calc already do the
formatting8. A few examples:

$1+$2 Sum of first and second field
$1+$2;%.2f Same, format result to two decimals
exp($2)+exp($1) Math functions can be used
$0;%.1f Reformat current cell to 1 decimal
($3-32)*5/9 Degrees F -> C conversion
$c/$1/$cm Hz -> cm conversion, using ‘constants.el’
tan($1);Dp3s1 Compute in degrees, precision 3, display SCI 1
sin($1);Dp3%.1e Same, but use printf specifier for display
vmean($2..$7) Compute column range mean, using vector function
vmean($2..$7);EN Same, but treat empty fields as 0
taylor($3,x=7,2) Taylor series of $3, at x=7, second degree

Calc also contains a complete set of logical operations. For example

if($1<20,teen,string("")) "teen" if age $1 less than 20, else empty

Note that you can also use two org-specific flags T and t for durations computations
Section 3.5.4 [Durations and time values], page 27.

3.5.3 Emacs Lisp forms as formulas

It is also possible to write a formula in Emacs Lisp; this can be useful for string manipulation
and control structures, if Calc’s functionality is not enough. If a formula starts with a
single-quote followed by an opening parenthesis, then it is evaluated as a Lisp form. The
evaluation should return either a string or a number. Just as with ‘calc’ formulas, you can
specify modes and a printf format after a semicolon. With Emacs Lisp forms, you need to
be conscious about the way field references are interpolated into the form. By default, a
reference will be interpolated as a Lisp string (in double-quotes) containing the field. If you
provide the ‘N’ mode switch, all referenced elements will be numbers (non-number fields
will be zero) and interpolated as Lisp numbers, without quotes. If you provide the ‘L’ flag,
all fields will be interpolated literally, without quotes. I.e., if you want a reference to be
interpreted as a string by the Lisp form, enclose the reference operator itself in double-
quotes, like "$3". Ranges are inserted as space-separated fields, so you can embed them in
list or vector syntax. Here are a few examples—note how the ‘N’ mode is used when we do
computations in Lisp:

Swap the first two characters of the content of column 1
'(concat (substring $1 1 2) (substring $1 0 1) (substring $1 2))

Add columns 1 and 2, equivalent to Calcfls $1+$2

8 The printf reformatting is limited in precision because the value passed to it is converted into an
integer or double. The integer is limited in size by truncating the signed value to 32 bits. The double
is limited in precision to 64 bits overall which leaves approximately 16 significant decimal digits.

Chapter 3: Tables 27

'(+ $1 $2);N

Compute the sum of columns 1-4, like Calcfls vsum($1..$4)
'(apply '+ '($1..$4));N

3.5.4 Durations and time values

If you want to compute time values use the T flag, either in Calc formulas or Elisp formulas:

| Task 1 | Task 2 | Total |

|---------+----------+----------|

| 2:12 | 1:47 | 03:59:00 |

| 3:02:20 | -2:07:00 | 0.92 |

#+TBLFM: @2$3=$1+$2;T::@3$3=$1+$2;t

Input duration values must be of the form [HH:MM[:SS], where seconds are optional.
With the T flag, computed durations will be displayed as HH:MM:SS (see the first formula
above). With the t flag, computed durations will be displayed according to the value of the
variable org-table-duration-custom-format, which defaults to 'hours and will display
the result as a fraction of hours (see the second formula in the example above).

Negative duration values can be manipulated as well, and integers will be considered as
seconds in addition and subtraction.

3.5.5 Field and range formulas

To assign a formula to a particular field, type it directly into the field, preceded by ‘:=’, for
example ‘:=vsum(@II..III)’. When you press TAB or RET or C-c C-c with the cursor
still in the field, the formula will be stored as the formula for this field, evaluated, and the
current field will be replaced with the result.

Formulas are stored in a special line starting with ‘#+TBLFM:’ directly below the table.
If you type the equation in the 4th field of the 3rd data line in the table, the formula
will look like ‘@3$4=$1+$2’. When inserting/deleting/swapping column and rows with the
appropriate commands, absolute references (but not relative ones) in stored formulas are
modified in order to still reference the same field. To avoid this from happening, in particular
in range references, anchor ranges at the table borders (using @<, @>, $<, $>), or at hlines
using the @I notation. Automatic adaptation of field references does of cause not happen if
you edit the table structure with normal editing commands—then you must fix the equations
yourself.

Instead of typing an equation into the field, you may also use the following command

C-u C-c = org-table-eval-formula

Install a new formula for the current field. The command prompts for a formula
with default taken from the ‘#+TBLFM:’ line, applies it to the current field, and
stores it.

The left-hand side of a formula can also be a special expression in order to assign the
formula to a number of different fields. There is no keyboard shortcut to enter such range
formulas. To add them, use the formula editor (see Section 3.5.7 [Editing and debugging
formulas], page 28) or edit the #+TBLFM: line directly.

$2= Column formula, valid for the entire column. This is so common that Org treats
these formulas in a special way, see Section 3.5.6 [Column formulas], page 28.

Chapter 3: Tables 28

@3= Row formula, applies to all fields in the specified row. @>= means the last row.

@1$2..@4$3=

Range formula, applies to all fields in the given rectangular range. This can
also be used to assign a formula to some but not all fields in a row.

$name= Named field, see Section 3.5.9 [Advanced features], page 30.

3.5.6 Column formulas

When you assign a formula to a simple column reference like $3=, the same formula will be
used in all fields of that column, with the following very convenient exceptions: (i) If the
table contains horizontal separator hlines, everything before the first such line is considered
part of the table header and will not be modified by column formulas. (ii) Fields that
already get a value from a field/range formula will be left alone by column formulas. These
conditions make column formulas very easy to use.

To assign a formula to a column, type it directly into any field in the column, preceded
by an equal sign, like ‘=$1+$2’. When you press TAB or RET or C-c C-c with the cursor
still in the field, the formula will be stored as the formula for the current column, evaluated
and the current field replaced with the result. If the field contains only ‘=’, the previously
stored formula for this column is used. For each column, Org will only remember the most
recently used formula. In the ‘#+TBLFM:’ line, column formulas will look like ‘$4=$1+$2’.
The left-hand side of a column formula can not be the name of column, it must be the
numeric column reference or $>.

Instead of typing an equation into the field, you may also use the following command:

C-c = org-table-eval-formula

Install a new formula for the current column and replace current field with
the result of the formula. The command prompts for a formula, with default
taken from the ‘#+TBLFM’ line, applies it to the current field and stores it. With
a numeric prefix argument(e.g. C-5 C-c =) the command will apply it to that
many consecutive fields in the current column.

3.5.7 Editing and debugging formulas

You can edit individual formulas in the minibuffer or directly in the field. Org can also
prepare a special buffer with all active formulas of a table. When offering a formula for
editing, Org converts references to the standard format (like B3 or D&) if possible. If you
prefer to only work with the internal format (like @3$2 or $4), configure the variable org-

table-use-standard-references.

C-c = or C-u C-c = org-table-eval-formula

Edit the formula associated with the current column/field in the minibuffer. See
Section 3.5.6 [Column formulas], page 28, and Section 3.5.5 [Field and range
formulas], page 27.

C-u C-u C-c = org-table-eval-formula

Re-insert the active formula (either a field formula, or a column formula) into
the current field, so that you can edit it directly in the field. The advantage
over editing in the minibuffer is that you can use the command C-c ?.

Chapter 3: Tables 29

C-c ? org-table-field-info

While editing a formula in a table field, highlight the field(s) referenced by the
reference at the cursor position in the formula.

C-c } Toggle the display of row and column numbers for a table, using overlays (org-
table-toggle-coordinate-overlays). These are updated each time the table
is aligned; you can force it with C-c C-c.

C-c { Toggle the formula debugger on and off (org-table-toggle-formula-
debugger). See below.

C-c ’ org-table-edit-formulas

Edit all formulas for the current table in a special buffer, where the formulas
will be displayed one per line. If the current field has an active formula, the
cursor in the formula editor will mark it. While inside the special buffer, Org
will automatically highlight any field or range reference at the cursor position.
You may edit, remove and add formulas, and use the following commands:

C-c C-c or C-x C-s org-table-fedit-finish

Exit the formula editor and store the modified formulas. With C-u

prefix, also apply the new formulas to the entire table.

C-c C-q org-table-fedit-abort

Exit the formula editor without installing changes.

C-c C-r org-table-fedit-toggle-ref-type

Toggle all references in the formula editor between standard (like
B3) and internal (like @3$2).

TAB org-table-fedit-lisp-indent

Pretty-print or indent Lisp formula at point. When in a line con-
taining a Lisp formula, format the formula according to Emacs Lisp
rules. Another TAB collapses the formula back again. In the open
formula, TAB re-indents just like in Emacs Lisp mode.

M-TAB lisp-complete-symbol

Complete Lisp symbols, just like in Emacs Lisp mode.

S-UP/DOWN/LEFT/RIGHT

Shift the reference at point. For example, if the reference is B3 and
you press S-RIGHT, it will become C3. This also works for relative
references and for hline references.

M-S-UP org-table-fedit-line-up

M-S-DOWN org-table-fedit-line-down

Move the test line for column formulas in the Org buffer up and
down.

M-UP org-table-fedit-scroll-down

M-DOWN org-table-fedit-scroll-up

Scroll the window displaying the table.

C-c } Turn the coordinate grid in the table on and off.

Chapter 3: Tables 30

Making a table field blank does not remove the formula associated with the field, because
that is stored in a different line (the ‘#+TBLFM’ line)—during the next recalculation the field
will be filled again. To remove a formula from a field, you have to give an empty reply when
prompted for the formula, or to edit the ‘#+TBLFM’ line.

You may edit the ‘#+TBLFM’ directly and re-apply the changed equations with C-c C-c

in that line or with the normal recalculation commands in the table.

Debugging formulas

When the evaluation of a formula leads to an error, the field content becomes the string
‘#ERROR’. If you would like see what is going on during variable substitution and calculation
in order to find a bug, turn on formula debugging in the Tblmenu and repeat the calculation,
for example by pressing C-u C-u C-c = RET in a field. Detailed information will be displayed.

3.5.8 Updating the table

Recalculation of a table is normally not automatic, but needs to be triggered by a command.
See Section 3.5.9 [Advanced features], page 30, for a way to make recalculation at least semi-
automatic.

In order to recalculate a line of a table or the entire table, use the following commands:

C-c * org-table-recalculate

Recalculate the current row by first applying the stored column formulas from
left to right, and all field/range formulas in the current row.

C-u C-c *

C-u C-c C-c

Recompute the entire table, line by line. Any lines before the first hline are left
alone, assuming that these are part of the table header.

C-u C-u C-c * or C-u C-u C-c C-c org-table-iterate

Iterate the table by recomputing it until no further changes occur. This may be
necessary if some computed fields use the value of other fields that are computed
later in the calculation sequence.

M-x org-table-recalculate-buffer-tables

Recompute all tables in the current buffer.

M-x org-table-iterate-buffer-tables

Iterate all tables in the current buffer, in order to converge table-to-table de-
pendencies.

3.5.9 Advanced features

If you want the recalculation of fields to happen automatically, or if you want to be able to
assign names9 to fields and columns, you need to reserve the first column of the table for
special marking characters.

C-# org-table-rotate-recalc-marks

Rotate the calculation mark in first column through the states ‘ ’, ‘#’, ‘*’, ‘!’,
‘$’. When there is an active region, change all marks in the region.

9 Such names must start by an alphabetic character and use only alphanumeric/underscore characters.

Chapter 3: Tables 31

Here is an example of a table that collects exam results of students and makes use of
these features:

|---+---------+--------+--------+--------+-------+------|

| | Student | Prob 1 | Prob 2 | Prob 3 | Total | Note |

|---+---------+--------+--------+--------+-------+------|

| ! | | P1 | P2 | P3 | Tot | |

| # | Maximum | 10 | 15 | 25 | 50 | 10.0 |

| ^ | | m1 | m2 | m3 | mt | |

|---+---------+--------+--------+--------+-------+------|

| # | Peter | 10 | 8 | 23 | 41 | 8.2 |

| # | Sam | 2 | 4 | 3 | 9 | 1.8 |

|---+---------+--------+--------+--------+-------+------|

| | Average | | | | 29.7 | |

| ^ | | | | | at | |

| $ | max=50 | | | | | |

|---+---------+--------+--------+--------+-------+------|

#+TBLFM: $6=vsum($P1..$P3)::$7=10*$Tot/$max;%.1f::$at=vmean(@-II..@-I);%.1f

Important: please note that for these special tables, recalculating the table with C-u C-c *

will only affect rows that are marked ‘#’ or ‘*’, and fields that have a formula assigned to
the field itself. The column formulas are not applied in rows with empty first field.

The marking characters have the following meaning:

‘!’ The fields in this line define names for the columns, so that you may refer to a
column as ‘$Tot’ instead of ‘$6’.

‘^’ This row defines names for the fields above the row. With such a definition,
any formula in the table may use ‘$m1’ to refer to the value ‘10’. Also, if you
assign a formula to a names field, it will be stored as ‘$name=...’.

‘_’ Similar to ‘^’, but defines names for the fields in the row below.

‘$’ Fields in this row can define parameters for formulas. For example, if a field in
a ‘$’ row contains ‘max=50’, then formulas in this table can refer to the value
50 using ‘$max’. Parameters work exactly like constants, only that they can be
defined on a per-table basis.

‘#’ Fields in this row are automatically recalculated when pressing TAB or RET
or S-TAB in this row. Also, this row is selected for a global recalculation with
C-u C-c *. Unmarked lines will be left alone by this command.

‘*’ Selects this line for global recalculation with C-u C-c *, but not for automatic
recalculation. Use this when automatic recalculation slows down editing too
much.

‘’ Unmarked lines are exempt from recalculation with C-u C-c *. All lines that
should be recalculated should be marked with ‘#’ or ‘*’.

‘/’ Do not export this line. Useful for lines that contain the narrowing ‘<N>’ markers
or column group markers.

Chapter 3: Tables 32

Finally, just to whet your appetite for what can be done with the fantastic ‘calc.el’
package, here is a table that computes the Taylor series of degree n at location x for a couple
of functions.

|---+-------------+---+-----+--------------------------------------|

| | Func | n | x | Result |

|---+-------------+---+-----+--------------------------------------|

| # | exp(x) | 1 | x | 1 + x |

| # | exp(x) | 2 | x | 1 + x + x^2 / 2 |

| # | exp(x) | 3 | x | 1 + x + x^2 / 2 + x^3 / 6 |

| # | x^2+sqrt(x) | 2 | x=0 | x*(0.5 / 0) + x^2 (2 - 0.25 / 0) / 2 |

| # | x^2+sqrt(x) | 2 | x=1 | 2 + 2.5 x - 2.5 + 0.875 (x - 1)^2 |

| * | tan(x) | 3 | x | 0.0175 x + 1.77e-6 x^3 |

|---+-------------+---+-----+--------------------------------------|

#+TBLFM: $5=taylor($2,$4,$3);n3

3.6 Org-Plot

Org-Plot can produce 2D and 3D graphs of information stored in org
tables using ‘Gnuplot’ http://www.gnuplot.info/ and ‘gnuplot-mode’
http://cars9.uchicago.edu/~ravel/software/gnuplot-mode.html. To see
this in action, ensure that you have both Gnuplot and Gnuplot mode installed on your
system, then call org-plot/gnuplot on the following table.

#+PLOT: title:"Citas" ind:1 deps:(3) type:2d with:histograms set:"yrange [0:]"

| Sede | Max cites | H-index |

|-----------+-----------+---------|

| Chile | 257.72 | 21.39 |

| Leeds | 165.77 | 19.68 |

| Sao Paolo | 71.00 | 11.50 |

| Stockholm | 134.19 | 14.33 |

| Morelia | 257.56 | 17.67 |

Notice that Org Plot is smart enough to apply the table’s headers as labels.
Further control over the labels, type, content, and appearance of plots can be
exercised through the #+PLOT: lines preceding a table. See below for a complete list
of Org-plot options. For more information and examples see the Org-plot tutorial at
http://orgmode.org/worg/org-tutorials/org-plot.html.

Plot Options

set Specify any gnuplot option to be set when graphing.

title Specify the title of the plot.

ind Specify which column of the table to use as the x axis.

deps Specify the columns to graph as a Lisp style list, surrounded by parentheses
and separated by spaces for example dep:(3 4) to graph the third and fourth
columns (defaults to graphing all other columns aside from the ind column).

type Specify whether the plot will be 2d, 3d, or grid.

http://www.gnuplot.info/
http://cars9.uchicago.edu/~ravel/software/gnuplot-mode.html
http://orgmode.org/worg/org-tutorials/org-plot.html

Chapter 3: Tables 33

with Specify a with option to be inserted for every col being plotted (e.g. lines,
points, boxes, impulses, etc...). Defaults to lines.

file If you want to plot to a file, specify "path/to/desired/output-file".

labels List of labels to be used for the deps (defaults to the column headers if they
exist).

line Specify an entire line to be inserted in the Gnuplot script.

map When plotting 3d or grid types, set this to t to graph a flat mapping rather
than a 3d slope.

timefmt Specify format of Org mode timestamps as they will be parsed by Gnuplot.
Defaults to ‘%Y-%m-%d-%H:%M:%S’.

script If you want total control, you can specify a script file (place the file name be-
tween double-quotes) which will be used to plot. Before plotting, every instance
of $datafile in the specified script will be replaced with the path to the gen-
erated data file. Note: even if you set this option, you may still want to specify
the plot type, as that can impact the content of the data file.

Chapter 4: Hyperlinks 34

4 Hyperlinks

Like HTML, Org provides links inside a file, external links to other files, Usenet articles,
emails, and much more.

4.1 Link format

Org will recognize plain URL-like links and activate them as clickable links. The general
link format, however, looks like this:

[[link][description]] or alternatively [[link]]

Once a link in the buffer is complete (all brackets present), Org will change the display so
that ‘description’ is displayed instead of ‘[[link][description]]’ and ‘link’ is displayed
instead of ‘[[link]]’. Links will be highlighted in the face org-link, which by default is
an underlined face. You can directly edit the visible part of a link. Note that this can be
either the ‘link’ part (if there is no description) or the ‘description’ part. To edit also
the invisible ‘link’ part, use C-c C-l with the cursor on the link.

If you place the cursor at the beginning or just behind the end of the displayed text and
press BACKSPACE, you will remove the (invisible) bracket at that location. This makes
the link incomplete and the internals are again displayed as plain text. Inserting the missing
bracket hides the link internals again. To show the internal structure of all links, use the
menu entry Org->Hyperlinks->Literal links.

4.2 Internal links

If the link does not look like a URL, it is considered to be internal in the current file. The
most important case is a link like ‘[[#my-custom-id]]’ which will link to the entry with
the CUSTOM_ID property ‘my-custom-id’. Such custom IDs are very good for HTML export
(see Section 12.5 [HTML export], page 129) where they produce pretty section links. You
are responsible yourself to make sure these custom IDs are unique in a file.

Links such as ‘[[My Target]]’ or ‘[[My Target][Find my target]]’ lead to a text
search in the current file.

The link can be followed with C-c C-o when the cursor is on the link, or with a mouse
click (see Section 4.4 [Handling links], page 36). Links to custom IDs will point to the
corresponding headline. The preferred match for a text link is a dedicated target : the
same string in double angular brackets. Targets may be located anywhere; sometimes it is
convenient to put them into a comment line. For example

<<My Target>>

In HTML export (see Section 12.5 [HTML export], page 129), such targets will become
named anchors for direct access through ‘http’ links1.

If no dedicated target exists, Org will search for a headline that is exactly the link text
but may also include a TODO keyword and tags2. In non-Org files, the search will look for
the words in the link text. In the above example the search would be for ‘my target’.

1 Note that text before the first headline is usually not exported, so the first such target should be after
the first headline, or in the line directly before the first headline.

2 To insert a link targeting a headline, in-buffer completion can be used. Just type a star followed by a
few optional letters into the buffer and press M-TAB. All headlines in the current buffer will be offered as
completions.

Chapter 4: Hyperlinks 35

Following a link pushes a mark onto Org’s own mark ring. You can return to the previous
position with C-c &. Using this command several times in direct succession goes back to
positions recorded earlier.

4.2.1 Radio targets

Org can automatically turn any occurrences of certain target names in normal text into
a link. So without explicitly creating a link, the text connects to the target radioing its
position. Radio targets are enclosed by triple angular brackets. For example, a target ‘<<<My
Target>>>’ causes each occurrence of ‘my target’ in normal text to become activated as
a link. The Org file is scanned automatically for radio targets only when the file is first
loaded into Emacs. To update the target list during editing, press C-c C-c with the cursor
on or at a target.

4.3 External links

Org supports links to files, websites, Usenet and email messages, BBDB database entries
and links to both IRC conversations and their logs. External links are URL-like locators.
They start with a short identifying string followed by a colon. There can be no space after
the colon. The following list shows examples for each link type.

http://www.astro.uva.nl/~dominik on the web
doi:10.1000/182 DOI for an electronic resource
file:/home/dominik/images/jupiter.jpg file, absolute path
/home/dominik/images/jupiter.jpg same as above
file:papers/last.pdf file, relative path
./papers/last.pdf same as above
file:/myself@some.where:papers/last.pdf file, path on remote machine
/myself@some.where:papers/last.pdf same as above
file:sometextfile::NNN file, jump to line number
file:projects.org another Org file
file:projects.org::some words text search in Org file3

file:projects.org::*task title heading search in Org file
file+sys:/path/to/file open via OS, like double-click
file+emacs:/path/to/file force opening by Emacs
docview:papers/last.pdf::NNN open in doc-view mode at page
id:B7423F4D-2E8A-471B-8810-C40F074717E9 Link to heading by ID
news:comp.emacs Usenet link
mailto:adent@galaxy.net Mail link
vm:folder VM folder link
vm:folder#id VM message link
vm://myself@some.where.org/folder#id VM on remote machine

3

The actual behavior of the search will depend on the value of
the variable org-link-search-must-match-exact-headline. If its value
is nil, then a fuzzy text search will be done. If it is t, then only the
exact headline will be matched. If the value is 'query-to-create,
then an exact headline will be searched; if it is not found, then the user
will be queried to create it.

Chapter 4: Hyperlinks 36

wl:folder WANDERLUST folder link
wl:folder#id WANDERLUST message link
mhe:folder MH-E folder link
mhe:folder#id MH-E message link
rmail:folder RMAIL folder link
rmail:folder#id RMAIL message link
gnus:group Gnus group link
gnus:group#id Gnus article link
bbdb:R.*Stallman BBDB link (with regexp)
irc:/irc.com/#emacs/bob IRC link
info:org#External links Info node link
shell:ls *.org A shell command
elisp:org-agenda Interactive Elisp command
elisp:(find-file-other-frame "Elisp.org") Elisp form to evaluate

For customizing Org to add new link types Section A.3 [Adding hyperlink types],
page 204.

A link should be enclosed in double brackets and may contain a descriptive text to be
displayed instead of the URL (see Section 4.1 [Link format], page 34), for example:

[[http://www.gnu.org/software/emacs/][GNU Emacs]]

If the description is a file name or URL that points to an image, HTML export (see
Section 12.5 [HTML export], page 129) will inline the image as a clickable button. If
there is no description at all and the link points to an image, that image will be inlined into
the exported HTML file.

Org also finds external links in the normal text and activates them as links. If spaces
must be part of the link (for example in ‘bbdb:Richard Stallman’), or if you need to remove
ambiguities about the end of the link, enclose them in square brackets.

4.4 Handling links

Org provides methods to create a link in the correct syntax, to insert it into an Org file,
and to follow the link.

C-c l org-store-link

Store a link to the current location. This is a global command (you must create
the key binding yourself) which can be used in any buffer to create a link. The
link will be stored for later insertion into an Org buffer (see below). What kind
of link will be created depends on the current buffer:

Org mode buffers
For Org files, if there is a ‘<<target>>’ at the cursor, the link points to the
target. Otherwise it points to the current headline, which will also be the
description4.

If the headline has a CUSTOM_ID property, a link to this custom ID will be stored.
In addition or alternatively (depending on the value of org-link-to-org-use-
id), a globally unique ID property will be created and/or used to construct a

4 If the headline contains a timestamp, it will be removed from the link and result in a wrong link – you
should avoid putting timestamp in the headline.

Chapter 4: Hyperlinks 37

link. So using this command in Org buffers will potentially create two links: a
human-readable from the custom ID, and one that is globally unique and works
even if the entry is moved from file to file. Later, when inserting the link, you
need to decide which one to use.

Email/News clients: VM, Rmail, Wanderlust, MH-E, Gnus
Pretty much all Emacs mail clients are supported. The link will point to the
current article, or, in some GNUS buffers, to the group. The description is
constructed from the author and the subject.

Web browsers: W3 and W3M
Here the link will be the current URL, with the page title as description.

Contacts: BBDB
Links created in a BBDB buffer will point to the current entry.

Chat: IRC
For IRC links, if you set the variable org-irc-link-to-logs to t, a ‘file:/’
style link to the relevant point in the logs for the current conversation is created.
Otherwise an ‘irc:/’ style link to the user/channel/server under the point will
be stored.

Other files
For any other files, the link will point to the file, with a search string (see
Section 4.7 [Search options], page 40) pointing to the contents of the current line.
If there is an active region, the selected words will form the basis of the search
string. If the automatically created link is not working correctly or accurately
enough, you can write custom functions to select the search string and to do the
search for particular file types—see Section 4.8 [Custom searches], page 41. The
key binding C-c l is only a suggestion—see Section 1.2 [Installation], page 2.

Agenda view
When the cursor is in an agenda view, the created link points to the entry
referenced by the current line.

C-c C-l org-insert-link

Insert a link5. This prompts for a link to be inserted into the buffer. You can
just type a link, using text for an internal link, or one of the link type prefixes
mentioned in the examples above. The link will be inserted into the buffer6,
along with a descriptive text. If some text was selected when this command is
called, the selected text becomes the default description.

Inserting stored links
All links stored during the current session are part of the history for this prompt,
so you can access them with UP and DOWN (or M-p/n).

Completion support
Completion with TAB will help you to insert valid link prefixes like ‘http:’ or

5 Note that you don’t have to use this command to insert a link. Links in Org are plain text, and you
can type or paste them straight into the buffer. By using this command, the links are automatically
enclosed in double brackets, and you will be asked for the optional descriptive text.

6 After insertion of a stored link, the link will be removed from the list of stored links. To keep it in the
list later use, use a triple C-u prefix argument to C-c C-l, or configure the option org-keep-stored-

link-after-insertion.

Chapter 4: Hyperlinks 38

‘ftp:’, including the prefixes defined through link abbreviations (see Section 4.6
[Link abbreviations], page 39). If you press RET after inserting only the prefix,
Org will offer specific completion support for some link types7 For example, if
you type file RET, file name completion (alternative access: C-u C-c C-l, see
below) will be offered, and after bbdb RET you can complete contact names.

C-u C-c C-l

When C-c C-l is called with a C-u prefix argument, a link to a file will be
inserted and you may use file name completion to select the name of the file.
The path to the file is inserted relative to the directory of the current Org file, if
the linked file is in the current directory or in a sub-directory of it, or if the path
is written relative to the current directory using ‘../’. Otherwise an absolute
path is used, if possible with ‘~/’ for your home directory. You can force an
absolute path with two C-u prefixes.

C-c C-l (with cursor on existing link)
When the cursor is on an existing link, C-c C-l allows you to edit the link and
description parts of the link.

C-c C-o org-open-at-point

Open link at point. This will launch a web browser for URLs (using browse-

url-at-point), run VM/MH-E/Wanderlust/Rmail/Gnus/BBDB for the cor-
responding links, and execute the command in a shell link. When the cursor
is on an internal link, this command runs the corresponding search. When the
cursor is on a TAG list in a headline, it creates the corresponding TAGS view.
If the cursor is on a timestamp, it compiles the agenda for that date. Further-
more, it will visit text and remote files in ‘file:’ links with Emacs and select a
suitable application for local non-text files. Classification of files is based on file
extension only. See option org-file-apps. If you want to override the default
application and visit the file with Emacs, use a C-u prefix. If you want to avoid
opening in Emacs, use a C-u C-u prefix.
If the cursor is on a headline, but not on a link, offer all links in the headline
and entry text. If you want to setup the frame configuration for following links,
customize org-link-frame-setup.

RET When org-return-follows-link is set, RET will also follow the link at point.

mouse-2

mouse-1 On links, mouse-2 will open the link just as C-c C-o would. Under Emacs 22
and later, mouse-1 will also follow a link.

mouse-3 Like mouse-2, but force file links to be opened with Emacs, and internal links
to be displayed in another window8.

C-c C-x C-v org-toggle-inline-images

Toggle the inline display of linked images. Normally this will only inline images
that have no description part in the link, i.e. images that will also be inlined

7 This works by calling a special function org-PREFIX-complete-link.
8 See the variable org-display-internal-link-with-indirect-buffer

Chapter 4: Hyperlinks 39

during export. When called with a prefix argument, also display images that
do have a link description. You can ask for inline images to be displayed at
startup by configuring the variable org-startup-with-inline-images9.

C-c % org-mark-ring-push

Push the current position onto the mark ring, to be able to return easily. Com-
mands following an internal link do this automatically.

C-c & org-mark-ring-goto

Jump back to a recorded position. A position is recorded by the commands
following internal links, and by C-c %. Using this command several times in
direct succession moves through a ring of previously recorded positions.

C-c C-x C-n org-next-link

C-c C-x C-p org-previous-link

Move forward/backward to the next link in the buffer. At the limit of the
buffer, the search fails once, and then wraps around. The key bindings for this
are really too long; you might want to bind this also to C-n and C-p

(add-hook 'org-load-hook

(lambda ()

(define-key org-mode-map "\C-n" 'org-next-link)

(define-key org-mode-map "\C-p" 'org-previous-link)))

4.5 Using links outside Org

You can insert and follow links that have Org syntax not only in Org, but in any Emacs
buffer. For this, you should create two global commands, like this (please select suitable
global keys yourself):

(global-set-key "\C-c L" 'org-insert-link-global)

(global-set-key "\C-c o" 'org-open-at-point-global)

4.6 Link abbreviations

Long URLs can be cumbersome to type, and often many similar links are needed in a
document. For this you can use link abbreviations. An abbreviated link looks like this

[[linkword:tag][description]]

where the tag is optional. The linkword must be a word, starting with a letter, followed by
letters, numbers, ‘-’, and ‘_’. Abbreviations are resolved according to the information in
the variable org-link-abbrev-alist that relates the linkwords to replacement text. Here
is an example:

(setq org-link-abbrev-alist

'(("bugzilla" . "http://10.1.2.9/bugzilla/show_bug.cgi?id=")

("google" . "http://www.google.com/search?q=")

("gmap" . "http://maps.google.com/maps?q=%s")

("omap" . "http://nominatim.openstreetmap.org/search?q=%s&polygon=1")

("ads" . "http://adsabs.harvard.edu/cgi-bin/nph-abs_connect?author=%s&db_key=AST")))

If the replacement text contains the string ‘%s’, it will be replaced with the tag. Otherwise
the tag will be appended to the string in order to create the link. You may also specify a
function that will be called with the tag as the only argument to create the link.

9 with corresponding #+STARTUP keywords inlineimages and inlineimages

Chapter 4: Hyperlinks 40

With the above setting, you could link to a specific bug with [[bugzilla:129]],
search the web for ‘OrgMode’ with [[google:OrgMode]], show the map location of the
Free Software Foundation [[gmap:51 Franklin Street, Boston]] or of Carsten office
[[omap:Science Park 904, Amsterdam, The Netherlands]] and find out what the Org
author is doing besides Emacs hacking with [[ads:Dominik,C]].

If you need special abbreviations just for a single Org buffer, you can define them in the
file with

#+LINK: bugzilla http://10.1.2.9/bugzilla/show_bug.cgi?id=

#+LINK: google http://www.google.com/search?q=%s

In-buffer completion (see Section 15.1 [Completion], page 191) can be used after ‘[’ to
complete link abbreviations. You may also define a function org-PREFIX-complete-link

that implements special (e.g. completion) support for inserting such a link with C-c C-l.
Such a function should not accept any arguments, and return the full link with prefix.

4.7 Search options in file links

File links can contain additional information to make Emacs jump to a particular location in
the file when following a link. This can be a line number or a search option after a double10

colon. For example, when the command C-c l creates a link (see Section 4.4 [Handling
links], page 36) to a file, it encodes the words in the current line as a search string that can
be used to find this line back later when following the link with C-c C-o.

Here is the syntax of the different ways to attach a search to a file link, together with
an explanation:

[[file:~/code/main.c::255]]

[[file:~/xx.org::My Target]]

[[file:~/xx.org::*My Target]]

[[file:~/xx.org::#my-custom-id]]

[[file:~/xx.org::/regexp/]]

255 Jump to line 255.

My Target Search for a link target ‘<<My Target>>’, or do a text search for ‘my target’,
similar to the search in internal links, see Section 4.2 [Internal links], page 34. In
HTML export (see Section 12.5 [HTML export], page 129), such a file link will
become an HTML reference to the corresponding named anchor in the linked
file.

*My Target

In an Org file, restrict search to headlines.

#my-custom-id

Link to a heading with a CUSTOM_ID property

/regexp/ Do a regular expression search for regexp. This uses the Emacs command
occur to list all matches in a separate window. If the target file is in Org
mode, org-occur is used to create a sparse tree with the matches.

10 For backward compatibility, line numbers can also follow a single colon.

Chapter 4: Hyperlinks 41

As a degenerate case, a file link with an empty file name can be used to search the
current file. For example, [[file:::find me]] does a search for ‘find me’ in the current
file, just as ‘[[find me]]’ would.

4.8 Custom Searches

The default mechanism for creating search strings and for doing the actual search related
to a file link may not work correctly in all cases. For example, BibTEX database files have
many entries like ‘year="1993"’ which would not result in good search strings, because the
only unique identification for a BibTEX entry is the citation key.

If you come across such a problem, you can write custom functions to set the right
search string for a particular file type, and to do the search for the string in the file.
Using add-hook, these functions need to be added to the hook variables org-create-

file-search-functions and org-execute-file-search-functions. See the docstring
for these variables for more information. Org actually uses this mechanism for BibTEX
database files, and you can use the corresponding code as an implementation example. See
the file ‘org-bibtex.el’.

Chapter 5: TODO items 42

5 TODO items

Org mode does not maintain TODO lists as separate documents1. Instead, TODO items
are an integral part of the notes file, because TODO items usually come up while taking
notes! With Org mode, simply mark any entry in a tree as being a TODO item. In this way,
information is not duplicated, and the entire context from which the TODO item emerged
is always present.

Of course, this technique for managing TODO items scatters them throughout your
notes file. Org mode compensates for this by providing methods to give you an overview of
all the things that you have to do.

5.1 Basic TODO functionality

Any headline becomes a TODO item when it starts with the word ‘TODO’, for example:

*** TODO Write letter to Sam Fortune

The most important commands to work with TODO entries are:

C-c C-t org-todo

Rotate the TODO state of the current item among

,-> (unmarked) -> TODO -> DONE --.

'--------------------------------'

The same rotation can also be done “remotely” from the timeline and agenda
buffers with the t command key (see Section 10.5 [Agenda commands],
page 102).

C-u C-c C-t

Select a specific keyword using completion or (if it has been set up) the fast
selection interface. For the latter, you need to assign keys to TODO states,
see Section 5.2.5 [Per-file keywords], page 45, and Section 6.2 [Setting tags],
page 54, for more information.

S-RIGHT / S-LEFT

Select the following/preceding TODO state, similar to cycling. Useful mostly if
more than two TODO states are possible (see Section 5.2 [TODO extensions],
page 43). See also Section 15.10.2 [Conflicts], page 201, for a discussion of the
interaction with shift-selection-mode. See also the variable org-treat-S-

cursor-todo-selection-as-state-change.

C-c / t org-show-todo-key

View TODO items in a sparse tree (see Section 2.6 [Sparse trees], page 11).
Folds the entire buffer, but shows all TODO items (with not-DONE state) and
the headings hierarchy above them. With a prefix argument (or by using C-c

/ T), search for a specific TODO. You will be prompted for the keyword, and
you can also give a list of keywords like KWD1|KWD2|... to list entries that
match any one of these keywords. With a numeric prefix argument N, show the
tree for the Nth keyword in the variable org-todo-keywords. With two prefix
arguments, find all TODO states, both un-done and done.

1 Of course, you can make a document that contains only long lists of TODO items, but this is not
required.

Chapter 5: TODO items 43

C-c a t org-todo-list

Show the global TODO list. Collects the TODO items (with not-DONE states)
from all agenda files (see Chapter 10 [Agenda Views], page 92) into a single
buffer. The new buffer will be in agenda-mode, which provides commands to ex-
amine and manipulate the TODO entries from the new buffer (see Section 10.5
[Agenda commands], page 102). See Section 10.3.2 [Global TODO list], page 96,
for more information.

S-M-RET org-insert-todo-heading

Insert a new TODO entry below the current one.

Changing a TODO state can also trigger tag changes. See the docstring of the option
org-todo-state-tags-triggers for details.

5.2 Extended use of TODO keywords

By default, marked TODO entries have one of only two states: TODO and DONE. Org
mode allows you to classify TODO items in more complex ways with TODO keywords
(stored in org-todo-keywords). With special setup, the TODO keyword system can work
differently in different files.

Note that tags are another way to classify headlines in general and TODO items in
particular (see Chapter 6 [Tags], page 54).

5.2.1 TODO keywords as workflow states

You can use TODO keywords to indicate different sequential states in the process of working
on an item, for example2:

(setq org-todo-keywords

'((sequence "TODO" "FEEDBACK" "VERIFY" "|" "DONE" "DELEGATED")))

The vertical bar separates the TODO keywords (states that need action) from the DONE
states (which need no further action). If you don’t provide the separator bar, the last state
is used as the DONE state. With this setup, the command C-c C-t will cycle an entry
from TODO to FEEDBACK, then to VERIFY, and finally to DONE and DELEGATED.
You may also use a numeric prefix argument to quickly select a specific state. For example
C-3 C-c C-t will change the state immediately to VERIFY. Or you can use S-LEFT to
go backward through the sequence. If you define many keywords, you can use in-buffer
completion (see Section 15.1 [Completion], page 191) or even a special one-key selection
scheme (see Section 5.2.4 [Fast access to TODO states], page 45) to insert these words into
the buffer. Changing a TODO state can be logged with a timestamp, see Section 5.3.2
[Tracking TODO state changes], page 47, for more information.

5.2.2 TODO keywords as types

The second possibility is to use TODO keywords to indicate different types of action items.
For example, you might want to indicate that items are for “work” or “home”. Or, when
you work with several people on a single project, you might want to assign action items
directly to persons, by using their names as TODO keywords. This would be set up like
this:

2 Changing this variable only becomes effective after restarting Org mode in a buffer.

Chapter 5: TODO items 44

(setq org-todo-keywords '((type "Fred" "Sara" "Lucy" "|" "DONE")))

In this case, different keywords do not indicate a sequence, but rather different types.
So the normal work flow would be to assign a task to a person, and later to mark it DONE.
Org mode supports this style by adapting the workings of the command C-c C-t3. When
used several times in succession, it will still cycle through all names, in order to first select
the right type for a task. But when you return to the item after some time and execute
C-c C-t again, it will switch from any name directly to DONE. Use prefix arguments or
completion to quickly select a specific name. You can also review the items of a specific
TODO type in a sparse tree by using a numeric prefix to C-c / t. For example, to see all
things Lucy has to do, you would use C-3 C-c / t. To collect Lucy’s items from all agenda
files into a single buffer, you would use the numeric prefix argument as well when creating
the global TODO list: C-3 C-c a t.

5.2.3 Multiple keyword sets in one file

Sometimes you may want to use different sets of TODO keywords in parallel. For example,
you may want to have the basic TODO/DONE, but also a workflow for bug fixing, and a
separate state indicating that an item has been canceled (so it is not DONE, but also does
not require action). Your setup would then look like this:

(setq org-todo-keywords

'((sequence "TODO" "|" "DONE")

(sequence "REPORT" "BUG" "KNOWNCAUSE" "|" "FIXED")

(sequence "|" "CANCELED")))

The keywords should all be different, this helps Org mode to keep track of which sub-
sequence should be used for a given entry. In this setup, C-c C-t only operates within a
subsequence, so it switches from DONE to (nothing) to TODO, and from FIXED to (nothing)
to REPORT. Therefore you need a mechanism to initially select the correct sequence. Be-
sides the obvious ways like typing a keyword or using completion, you may also apply the
following commands:

C-u C-u C-c C-t

C-S-RIGHT

C-S-LEFT These keys jump from one TODO subset to the next. In the above example,
C-u C-u C-c C-t or C-S-RIGHT would jump from TODO or DONE to REPORT, and
any of the words in the second row to CANCELED. Note that the C-S- key
binding conflict with shift-selection-mode (see Section 15.10.2 [Conflicts],
page 201).

S-RIGHT

S-LEFT S-<LEFT> and S-<RIGHT> and walk through all keywords from all sets, so for
example S-<RIGHT> would switch from DONE to REPORT in the example above.
See also Section 15.10.2 [Conflicts], page 201, for a discussion of the interaction
with shift-selection-mode.

3 This is also true for the t command in the timeline and agenda buffers.

Chapter 5: TODO items 45

5.2.4 Fast access to TODO states

If you would like to quickly change an entry to an arbitrary TODO state instead of cycling
through the states, you can set up keys for single-letter access to the states. This is done
by adding the section key after each keyword, in parentheses. For example:

(setq org-todo-keywords

'((sequence "TODO(t)" "|" "DONE(d)")

(sequence "REPORT(r)" "BUG(b)" "KNOWNCAUSE(k)" "|" "FIXED(f)")

(sequence "|" "CANCELED(c)")))

If you then press C-c C-t followed by the selection key, the entry will be switched to
this state. SPC can be used to remove any TODO keyword from an entry.4

5.2.5 Setting up keywords for individual files

It can be very useful to use different aspects of the TODO mechanism in different files.
For file-local settings, you need to add special lines to the file which set the keywords and
interpretation for that file only. For example, to set one of the two examples discussed
above, you need one of the following lines, starting in column zero anywhere in the file:

#+TODO: TODO FEEDBACK VERIFY | DONE CANCELED

(you may also write #+SEQ_TODO to be explicit about the interpretation, but it means the
same as #+TODO), or

#+TYP_TODO: Fred Sara Lucy Mike | DONE

A setup for using several sets in parallel would be:

#+TODO: TODO | DONE

#+TODO: REPORT BUG KNOWNCAUSE | FIXED

#+TODO: | CANCELED

To make sure you are using the correct keyword, type ‘#+’ into the buffer and then use
M-TAB completion.

Remember that the keywords after the vertical bar (or the last keyword if no bar is
there) must always mean that the item is DONE (although you may use a different word).
After changing one of these lines, use C-c C-c with the cursor still in the line to make the
changes known to Org mode5.

5.2.6 Faces for TODO keywords

Org mode highlights TODO keywords with special faces: org-todo for keywords indicating
that an item still has to be acted upon, and org-done for keywords indicating that an item
is finished. If you are using more than 2 different states, you might want to use special
faces for some of them. This can be done using the variable org-todo-keyword-faces. For
example:

(setq org-todo-keyword-faces

'(("TODO" . org-warning) ("STARTED" . "yellow")

("CANCELED" . (:foreground "blue" :weight bold))))

4 Check also the variable org-fast-tag-selection-include-todo, it allows you to change the TODO
state through the tags interface (see Section 6.2 [Setting tags], page 54), in case you like to mingle the
two concepts. Note that this means you need to come up with unique keys across both sets of keywords.

5 Org mode parses these lines only when Org mode is activated after visiting a file. C-c C-c with the
cursor in a line starting with ‘#+’ is simply restarting Org mode for the current buffer.

Chapter 5: TODO items 46

While using a list with face properties as shown for CANCELED should work, this does
not always seem to be the case. If necessary, define a special face and use that. A string is
interpreted as a color. The variable org-faces-easy-properties determines if that color
is interpreted as a foreground or a background color.

5.2.7 TODO dependencies

The structure of Org files (hierarchy and lists) makes it easy to define TODO dependencies.
Usually, a parent TODO task should not be marked DONE until all subtasks (defined as
children tasks) are marked as DONE. And sometimes there is a logical sequence to a number
of (sub)tasks, so that one task cannot be acted upon before all siblings above it are done. If
you customize the variable org-enforce-todo-dependencies, Org will block entries from
changing state to DONE while they have children that are not DONE. Furthermore, if an
entry has a property ORDERED, each of its children will be blocked until all earlier siblings
are marked DONE. Here is an example:

* TODO Blocked until (two) is done

** DONE one

** TODO two

* Parent

:PROPERTIES:

:ORDERED: t

:END:

** TODO a

** TODO b, needs to wait for (a)

** TODO c, needs to wait for (a) and (b)

C-c C-x o org-toggle-ordered-property

Toggle the ORDERED property of the current entry. A property is used for this
behavior because this should be local to the current entry, not inherited like a
tag. However, if you would like to track the value of this property with a tag for
better visibility, customize the variable org-track-ordered-property-with-

tag.

C-u C-u C-u C-c C-t

Change TODO state, circumventing any state blocking.

If you set the variable org-agenda-dim-blocked-tasks, TODO entries that cannot be
closed because of such dependencies will be shown in a dimmed font or even made invisible
in agenda views (see Chapter 10 [Agenda Views], page 92).

You can also block changes of TODO states by looking at checkboxes (see Section 5.6
[Checkboxes], page 51). If you set the variable org-enforce-todo-checkbox-

dependencies, an entry that has unchecked checkboxes will be blocked from switching to
DONE.

If you need more complex dependency structures, for example dependencies between
entries in different trees or files, check out the contributed module ‘org-depend.el’.

Chapter 5: TODO items 47

5.3 Progress logging

Org mode can automatically record a timestamp and possibly a note when you mark a
TODO item as DONE, or even each time you change the state of a TODO item. This
system is highly configurable, settings can be on a per-keyword basis and can be localized
to a file or even a subtree. For information on how to clock working time for a task, see
Section 8.4 [Clocking work time], page 74.

5.3.1 Closing items

The most basic logging is to keep track of when a certain TODO item was finished. This is
achieved with1

(setq org-log-done 'time)

Then each time you turn an entry from a TODO (not-done) state into any of the DONE
states, a line ‘CLOSED: [timestamp]’ will be inserted just after the headline. If you turn
the entry back into a TODO item through further state cycling, that line will be removed
again. If you want to record a note along with the timestamp, use2

(setq org-log-done 'note)

You will then be prompted for a note, and that note will be stored below the entry with a
‘Closing Note’ heading.

In the timeline (see Section 10.3.4 [Timeline], page 99) and in the agenda (see
Section 10.3.1 [Weekly/daily agenda], page 94), you can then use the l key to display the
TODO items with a ‘CLOSED’ timestamp on each day, giving you an overview of what has
been done.

5.3.2 Tracking TODO state changes

When TODO keywords are used as workflow states (see Section 5.2.1 [Workflow states],
page 43), you might want to keep track of when a state change occurred and maybe take a
note about this change. You can either record just a timestamp, or a time-stamped note for
a change. These records will be inserted after the headline as an itemized list, newest first3.
When taking a lot of notes, you might want to get the notes out of the way into a drawer
(see Section 2.8 [Drawers], page 14). Customize the variable org-log-into-drawer to get
this behavior—the recommended drawer for this is called LOGBOOK. You can also overrule
the setting of this variable for a subtree by setting a LOG_INTO_DRAWER property.

Since it is normally too much to record a note for every state, Org mode expects con-
figuration on a per-keyword basis for this. This is achieved by adding special markers ‘!’
(for a timestamp) or ‘@’ (for a note with timestamp) in parentheses after each keyword. For
example, with the setting

(setq org-todo-keywords

'((sequence "TODO(t)" "WAIT(w@/!)" "|" "DONE(d!)" "CANCELED(c@)")))

To record a timestamp without a note for TODO keywords configured with ‘@’, just type
C-c C-c to enter a blank note when prompted.

1 The corresponding in-buffer setting is: #+STARTUP: logdone
2 The corresponding in-buffer setting is: #+STARTUP: lognotedone
3 See the variable org-log-states-order-reversed

Chapter 5: TODO items 48

you not only define global TODO keywords and fast access keys, but also request that a
time is recorded when the entry is set to DONE4, and that a note is recorded when switching
to WAIT or CANCELED. The setting for WAIT is even more special: the ‘!’ after the slash
means that in addition to the note taken when entering the state, a timestamp should be
recorded when leaving the WAIT state, if and only if the target state does not configure
logging for entering it. So it has no effect when switching from WAIT to DONE, because
DONE is configured to record a timestamp only. But when switching from WAIT back to
TODO, the ‘/!’ in the WAIT setting now triggers a timestamp even though TODO has no
logging configured.

You can use the exact same syntax for setting logging preferences local to a buffer:

#+TODO: TODO(t) WAIT(w@/!) | DONE(d!) CANCELED(c@)

In order to define logging settings that are local to a subtree or a single item, define a
LOGGING property in this entry. Any non-empty LOGGING property resets all logging
settings to nil. You may then turn on logging for this specific tree using STARTUP keywords
like lognotedone or logrepeat, as well as adding state specific settings like TODO(!). For
example

* TODO Log each state with only a time

:PROPERTIES:

:LOGGING: TODO(!) WAIT(!) DONE(!) CANCELED(!)

:END:

* TODO Only log when switching to WAIT, and when repeating

:PROPERTIES:

:LOGGING: WAIT(@) logrepeat

:END:

* TODO No logging at all

:PROPERTIES:

:LOGGING: nil

:END:

5.3.3 Tracking your habits

Org has the ability to track the consistency of a special category of TODOs, called “habits”.
A habit has the following properties:

1. You have enabled the habits module by customizing the variable org-modules.

2. The habit is a TODO item, with a TODO keyword representing an open state.

3. The property STYLE is set to the value habit.

4. The TODO has a scheduled date, usually with a .+ style repeat interval. A ++ style
may be appropriate for habits with time constraints, e.g., must be done on weekends,
or a + style for an unusual habit that can have a backlog, e.g., weekly reports.

5. The TODO may also have minimum and maximum ranges specified by using the syntax
‘.+2d/3d’, which says that you want to do the task at least every three days, but at
most every two days.

4 It is possible that Org mode will record two timestamps when you are using both org-log-done and
state change logging. However, it will never prompt for two notes—if you have configured both, the state
change recording note will take precedence and cancel the ‘Closing Note’.

Chapter 5: TODO items 49

6. You must also have state logging for the DONE state enabled, in order for historical data
to be represented in the consistency graph. If it is not enabled it is not an error, but
the consistency graphs will be largely meaningless.

To give you an idea of what the above rules look like in action, here’s an actual habit
with some history:

** TODO Shave

SCHEDULED: <2009-10-17 Sat .+2d/4d>

- State "DONE" from "TODO" [2009-10-15 Thu]

- State "DONE" from "TODO" [2009-10-12 Mon]

- State "DONE" from "TODO" [2009-10-10 Sat]

- State "DONE" from "TODO" [2009-10-04 Sun]

- State "DONE" from "TODO" [2009-10-02 Fri]

- State "DONE" from "TODO" [2009-09-29 Tue]

- State "DONE" from "TODO" [2009-09-25 Fri]

- State "DONE" from "TODO" [2009-09-19 Sat]

- State "DONE" from "TODO" [2009-09-16 Wed]

- State "DONE" from "TODO" [2009-09-12 Sat]

:PROPERTIES:

:STYLE: habit

:LAST_REPEAT: [2009-10-19 Mon 00:36]

:END:

What this habit says is: I want to shave at most every 2 days (given by the SCHEDULED
date and repeat interval) and at least every 4 days. If today is the 15th, then the habit first
appears in the agenda on Oct 17, after the minimum of 2 days has elapsed, and will appear
overdue on Oct 19, after four days have elapsed.

What’s really useful about habits is that they are displayed along with a consistency
graph, to show how consistent you’ve been at getting that task done in the past. This
graph shows every day that the task was done over the past three weeks, with colors for
each day. The colors used are:

Blue If the task wasn’t to be done yet on that day.

Green If the task could have been done on that day.

Yellow If the task was going to be overdue the next day.

Red If the task was overdue on that day.

In addition to coloring each day, the day is also marked with an asterisk if the task was
actually done that day, and an exclamation mark to show where the current day falls in the
graph.

There are several configuration variables that can be used to change the way habits are
displayed in the agenda.

org-habit-graph-column

The buffer column at which the consistency graph should be drawn. This will
overwrite any text in that column, so it is a good idea to keep your habits’ titles
brief and to the point.

Chapter 5: TODO items 50

org-habit-preceding-days

The amount of history, in days before today, to appear in consistency graphs.

org-habit-following-days

The number of days after today that will appear in consistency graphs.

org-habit-show-habits-only-for-today

If non-nil, only show habits in today’s agenda view. This is set to true by
default.

Lastly, pressing K in the agenda buffer will cause habits to temporarily be disabled and
they won’t appear at all. Press K again to bring them back. They are also subject to tag
filtering, if you have habits which should only be done in certain contexts, for example.

5.4 Priorities

If you use Org mode extensively, you may end up with enough TODO items that it starts
to make sense to prioritize them. Prioritizing can be done by placing a priority cookie into
the headline of a TODO item, like this

*** TODO [#A] Write letter to Sam Fortune

By default, Org mode supports three priorities: ‘A’, ‘B’, and ‘C’. ‘A’ is the highest priority.
An entry without a cookie is treated just like priority ‘B’. Priorities make a difference only
for sorting in the agenda (see Section 10.3.1 [Weekly/daily agenda], page 94); outside the
agenda, they have no inherent meaning to Org mode. The cookies can be highlighted with
special faces by customizing the variable org-priority-faces.

Priorities can be attached to any outline node; they do not need to be TODO items.

C-c , Set the priority of the current headline (org-priority). The command
prompts for a priority character ‘A’, ‘B’ or ‘C’. When you press SPC instead,
the priority cookie is removed from the headline. The priorities can also be
changed “remotely” from the timeline and agenda buffer with the , command
(see Section 10.5 [Agenda commands], page 102).

S-UP org-priority-up

S-DOWN org-priority-down

Increase/decrease priority of current headline5. Note that these keys are also
used to modify timestamps (see Section 8.2 [Creating timestamps], page 68).
See also Section 15.10.2 [Conflicts], page 201, for a discussion of the interaction
with shift-selection-mode.

You can change the range of allowed priorities by setting the variables org-highest-

priority, org-lowest-priority, and org-default-priority. For an individual buffer,
you may set these values (highest, lowest, default) like this (please make sure that the
highest priority is earlier in the alphabet than the lowest priority):

#+PRIORITIES: A C B

5 See also the option org-priority-start-cycle-with-default.

Chapter 5: TODO items 51

5.5 Breaking tasks down into subtasks

It is often advisable to break down large tasks into smaller, manageable subtasks. You
can do this by creating an outline tree below a TODO item, with detailed subtasks on the
tree6. To keep the overview over the fraction of subtasks that are already completed, insert
either ‘[/]’ or ‘[%]’ anywhere in the headline. These cookies will be updated each time the
TODO status of a child changes, or when pressing C-c C-c on the cookie. For example:

* Organize Party [33%]

** TODO Call people [1/2]

*** TODO Peter

*** DONE Sarah

** TODO Buy food

** DONE Talk to neighbor

If a heading has both checkboxes and TODO children below it, the meaning of the
statistics cookie become ambiguous. Set the property COOKIE_DATA to either ‘checkbox’ or
‘todo’ to resolve this issue.

If you would like to have the statistics cookie count any TODO entries in the subtree
(not just direct children), configure the variable org-hierarchical-todo-statistics. To
do this for a single subtree, include the word ‘recursive’ into the value of the COOKIE_DATA
property.

* Parent capturing statistics [2/20]

:PROPERTIES:

:COOKIE_DATA: todo recursive

:END:

If you would like a TODO entry to automatically change to DONE when all children
are done, you can use the following setup:

(defun org-summary-todo (n-done n-not-done)

"Switch entry to DONE when all subentries are done, to TODO otherwise."

(let (org-log-done org-log-states) ; turn off logging

(org-todo (if (= n-not-done 0) "DONE" "TODO"))))

(add-hook 'org-after-todo-statistics-hook 'org-summary-todo)

Another possibility is the use of checkboxes to identify (a hierarchy of) a large number
of subtasks (see Section 5.6 [Checkboxes], page 51).

5.6 Checkboxes

Every item in a plain list7 (see Section 2.7 [Plain lists], page 12) can be made into a checkbox
by starting it with the string ‘[]’. This feature is similar to TODO items (see Chapter 5
[TODO Items], page 42), but is more lightweight. Checkboxes are not included into the
global TODO list, so they are often great to split a task into a number of simple steps. Or
you can use them in a shopping list. To toggle a checkbox, use C-c C-c, or use the mouse
(thanks to Piotr Zielinski’s ‘org-mouse.el’).

6 To keep subtasks out of the global TODO list, see the org-agenda-todo-list-sublevels.
7 With the exception of description lists. But you can allow it by modifying org-list-automatic-rules

accordingly.

Chapter 5: TODO items 52

Here is an example of a checkbox list.

* TODO Organize party [2/4]

- [-] call people [1/3]

- [] Peter

- [X] Sarah

- [] Sam

- [X] order food

- [] think about what music to play

- [X] talk to the neighbors

Checkboxes work hierarchically, so if a checkbox item has children that are checkboxes,
toggling one of the children checkboxes will make the parent checkbox reflect if none, some,
or all of the children are checked.

The ‘[2/4]’ and ‘[1/3]’ in the first and second line are cookies indicating how many
checkboxes present in this entry have been checked off, and the total number of checkboxes
present. This can give you an idea on how many checkboxes remain, even without opening a
folded entry. The cookies can be placed into a headline or into (the first line of) a plain list
item. Each cookie covers checkboxes of direct children structurally below the headline/item
on which the cookie appears8. You have to insert the cookie yourself by typing either ‘[/]’
or ‘[%]’. With ‘[/]’ you get an ‘n out of m’ result, as in the examples above. With ‘[%]’
you get information about the percentage of checkboxes checked (in the above example,
this would be ‘[50%]’ and ‘[33%]’, respectively). In a headline, a cookie can count either
checkboxes below the heading or TODO states of children, and it will display whatever was
changed last. Set the property COOKIE_DATA to either ‘checkbox’ or ‘todo’ to resolve this
issue.

If the current outline node has an ORDERED property, checkboxes must be checked off in
sequence, and an error will be thrown if you try to check off a box while there are unchecked
boxes above it.

The following commands work with checkboxes:

C-c C-c org-toggle-checkbox

Toggle checkbox status or (with prefix arg) checkbox presence at point. With
a single prefix argument, add an empty checkbox or remove the current one9.
With a double prefix argument, set it to ‘[-]’, which is considered to be an
intermediate state.

C-c C-x C-b org-toggle-checkbox

Toggle checkbox status or (with prefix arg) checkbox presence at point. With
double prefix argument, set it to ‘[-]’, which is considered to be an intermediate
state.

− If there is an active region, toggle the first checkbox in the region and set
all remaining boxes to the same status as the first. With a prefix arg, add
or remove the checkbox for all items in the region.

8 Set the variable org-hierarchical-checkbox-statistics if you want such cookies to count all check-
boxes below the cookie, not just those belonging to direct children.

9 ‘C-u C-c C-c’ on the first item of a list with no checkbox will add checkboxes to the rest of the list.

Chapter 5: TODO items 53

− If the cursor is in a headline, toggle checkboxes in the region between this
headline and the next (so not the entire subtree).

− If there is no active region, just toggle the checkbox at point.

M-S-RET org-insert-todo-heading

Insert a new item with a checkbox. This works only if the cursor is already in
a plain list item (see Section 2.7 [Plain lists], page 12).

C-c C-x o org-toggle-ordered-property

Toggle the ORDERED property of the entry, to toggle if checkboxes must be
checked off in sequence. A property is used for this behavior because this
should be local to the current entry, not inherited like a tag. However, if you
would like to track the value of this property with a tag for better visibility,
customize the variable org-track-ordered-property-with-tag.

C-c # org-update-statistics-cookies

Update the statistics cookie in the current outline entry. When called with
a C-u prefix, update the entire file. Checkbox statistic cookies are updated
automatically if you toggle checkboxes with C-c C-c and make new ones with
M-S-RET. TODO statistics cookies update when changing TODO states. If you
delete boxes/entries or add/change them by hand, use this command to get
things back into sync.

Chapter 6: Tags 54

6 Tags

An excellent way to implement labels and contexts for cross-correlating information is to
assign tags to headlines. Org mode has extensive support for tags.

Every headline can contain a list of tags; they occur at the end of the headline. Tags are
normal words containing letters, numbers, ‘_’, and ‘@’. Tags must be preceded and followed
by a single colon, e.g., ‘:work:’. Several tags can be specified, as in ‘:work:urgent:’. Tags
will by default be in bold face with the same color as the headline. You may specify special
faces for specific tags using the variable org-tag-faces, in much the same way as you can
for TODO keywords (see Section 5.2.6 [Faces for TODO keywords], page 45).

6.1 Tag inheritance

Tags make use of the hierarchical structure of outline trees. If a heading has a certain tag,
all subheadings will inherit the tag as well. For example, in the list

* Meeting with the French group :work:

** Summary by Frank :boss:notes:

*** TODO Prepare slides for him :action:

the final heading will have the tags ‘:work:’, ‘:boss:’, ‘:notes:’, and ‘:action:’ even
though the final heading is not explicitly marked with those tags. You can also set tags
that all entries in a file should inherit just as if these tags were defined in a hypothetical
level zero that surrounds the entire file. Use a line like this1:

#+FILETAGS: :Peter:Boss:Secret:

To limit tag inheritance to specific tags, or to turn it off entirely, use the variables org-

use-tag-inheritance and org-tags-exclude-from-inheritance.

When a headline matches during a tags search while tag inheritance is turned on, all
the sublevels in the same tree will (for a simple match form) match as well2. The list of
matches may then become very long. If you only want to see the first tags match in a
subtree, configure the variable org-tags-match-list-sublevels (not recommended).

6.2 Setting tags

Tags can simply be typed into the buffer at the end of a headline. After a colon, M-TAB
offers completion on tags. There is also a special command for inserting tags:

C-c C-q org-set-tags-command

Enter new tags for the current headline. Org mode will either offer completion
or a special single-key interface for setting tags, see below. After pressing RET,
the tags will be inserted and aligned to org-tags-column. When called with
a C-u prefix, all tags in the current buffer will be aligned to that column, just
to make things look nice. TAGS are automatically realigned after promotion,
demotion, and TODO state changes (see Section 5.1 [TODO basics], page 42).

1 As with all these in-buffer settings, pressing C-c C-c activates any changes in the line.
2 This is only true if the search does not involve more complex tests including properties (see Section 7.3

[Property searches], page 60).

Chapter 6: Tags 55

C-c C-c org-set-tags-command

When the cursor is in a headline, this does the same as C-c C-q.

Org supports tag insertion based on a list of tags. By default this list is constructed
dynamically, containing all tags currently used in the buffer. You may also globally specify
a hard list of tags with the variable org-tag-alist. Finally you can set the default tags
for a given file with lines like

#+TAGS: @work @home @tennisclub

#+TAGS: laptop car pc sailboat

If you have globally defined your preferred set of tags using the variable org-tag-alist,
but would like to use a dynamic tag list in a specific file, add an empty TAGS option line
to that file:

#+TAGS:

If you have a preferred set of tags that you would like to use in every file, in addition to
those defined on a per-file basis by TAGS option lines, then you may specify a list of tags
with the variable org-tag-persistent-alist. You may turn this off on a per-file basis by
adding a STARTUP option line to that file:

#+STARTUP: noptag

By default Org mode uses the standard minibuffer completion facilities for entering tags.
However, it also implements another, quicker, tag selection method called fast tag selection.
This allows you to select and deselect tags with just a single key press. For this to work
well you should assign unique letters to most of your commonly used tags. You can do this
globally by configuring the variable org-tag-alist in your ‘.emacs’ file. For example, you
may find the need to tag many items in different files with ‘:@home:’. In this case you can
set something like:

(setq org-tag-alist '(("@work" . ?w) ("@home" . ?h) ("laptop" . ?l)))

If the tag is only relevant to the file you are working on, then you can instead set the TAGS
option line as:

#+TAGS: @work(w) @home(h) @tennisclub(t) laptop(l) pc(p)

The tags interface will show the available tags in a splash window. If you want to start a
new line after a specific tag, insert ‘\n’ into the tag list

#+TAGS: @work(w) @home(h) @tennisclub(t) \n laptop(l) pc(p)

or write them in two lines:

#+TAGS: @work(w) @home(h) @tennisclub(t)

#+TAGS: laptop(l) pc(p)

You can also group together tags that are mutually exclusive by using braces, as in:

#+TAGS: { @work(w) @home(h) @tennisclub(t) } laptop(l) pc(p)

you indicate that at most one of ‘@work’, ‘@home’, and ‘@tennisclub’ should be selected.
Multiple such groups are allowed.

Don’t forget to press C-c C-c with the cursor in one of these lines to activate any changes.

To set these mutually exclusive groups in the variable org-tags-alist, you must use the
dummy tags :startgroup and :endgroup instead of the braces. Similarly, you can use
:newline to indicate a line break. The previous example would be set globally by the
following configuration:

Chapter 6: Tags 56

(setq org-tag-alist '((:startgroup . nil)

("@work" . ?w) ("@home" . ?h)

("@tennisclub" . ?t)

(:endgroup . nil)

("laptop" . ?l) ("pc" . ?p)))

If at least one tag has a selection key then pressing C-c C-c will automatically present
you with a special interface, listing inherited tags, the tags of the current headline, and a
list of all valid tags with corresponding keys3. In this interface, you can use the following
keys:

a-z... Pressing keys assigned to tags will add or remove them from the list of tags in
the current line. Selecting a tag in a group of mutually exclusive tags will turn
off any other tags from that group.

TAB Enter a tag in the minibuffer, even if the tag is not in the predefined list. You
will be able to complete on all tags present in the buffer. You can also add
several tags: just separate them with a comma.

SPC Clear all tags for this line.

RET Accept the modified set.

C-g Abort without installing changes.

q If q is not assigned to a tag, it aborts like C-g.

! Turn off groups of mutually exclusive tags. Use this to (as an exception) assign
several tags from such a group.

C-c Toggle auto-exit after the next change (see below). If you are using expert
mode, the first C-c will display the selection window.

This method lets you assign tags to a headline with very few keys. With the above setup,
you could clear the current tags and set ‘@home’, ‘laptop’ and ‘pc’ tags with just the
following keys: C-c C-c SPC h l p RET. Switching from ‘@home’ to ‘@work’ would be done
with C-c C-c w RET or alternatively with C-c C-c C-c w. Adding the non-predefined tag
‘Sarah’ could be done with C-c C-c TAB S a r a h RET RET.

If you find that most of the time you need only a single key press to modify your list
of tags, set the variable org-fast-tag-selection-single-key. Then you no longer have
to press RET to exit fast tag selection—it will immediately exit after the first change. If
you then occasionally need more keys, press C-c to turn off auto-exit for the current tag
selection process (in effect: start selection with C-c C-c C-c instead of C-c C-c). If you set
the variable to the value expert, the special window is not even shown for single-key tag
selection, it comes up only when you press an extra C-c.

6.3 Tag searches

Once a system of tags has been set up, it can be used to collect related information into
special lists.

3 Keys will automatically be assigned to tags which have no configured keys.

Chapter 6: Tags 57

C-c / m or C-c \\ org-match-sparse-tree

Create a sparse tree with all headlines matching a tags search. With a C-u

prefix argument, ignore headlines that are not a TODO line.

C-c a m org-tags-view

Create a global list of tag matches from all agenda files. See Section 10.3.3
[Matching tags and properties], page 97.

C-c a M org-tags-view

Create a global list of tag matches from all agenda files, but check only TODO
items and force checking subitems (see variable org-tags-match-list-

sublevels).

These commands all prompt for a match string which allows basic Boolean logic
like ‘+boss+urgent-project1’, to find entries with tags ‘boss’ and ‘urgent’, but not
‘project1’, or ‘Kathy|Sally’ to find entries which are tagged, like ‘Kathy’ or ‘Sally’.
The full syntax of the search string is rich and allows also matching against TODO
keywords, entry levels and properties. For a complete description with many examples, see
Section 10.3.3 [Matching tags and properties], page 97.

Chapter 7: Properties and columns 58

7 Properties and columns

A property is a key-value pair associated with an entry. Properties can be set so they are
associated with a single entry, with every entry in a tree, or with every entry in an Org
mode file.

There are two main applications for properties in Org mode. First, properties are like
tags, but with a value. Imagine maintaining a file where you document bugs and plan
releases for a piece of software. Instead of using tags like :release_1:, :release_2:, you
can use a property, say :Release:, that in different subtrees has different values, such as
1.0 or 2.0. Second, you can use properties to implement (very basic) database capabilities
in an Org buffer. Imagine keeping track of your music CDs, where properties could be
things such as the album, artist, date of release, number of tracks, and so on.

Properties can be conveniently edited and viewed in column view (see Section 7.5 [Col-
umn view], page 61).

7.1 Property syntax

Properties are key-value pairs. When they are associated with a single entry or with a tree
they need to be inserted into a special drawer (see Section 2.8 [Drawers], page 14) with the
name PROPERTIES. Each property is specified on a single line, with the key (surrounded by
colons) first, and the value after it. Here is an example:

* CD collection

** Classic

*** Goldberg Variations

:PROPERTIES:

:Title: Goldberg Variations

:Composer: J.S. Bach

:Artist: Glen Gould

:Publisher: Deutsche Grammophon

:NDisks: 1

:END:

Depending on the value of org-use-property-inheritance, a property set this way will
either be associated with a single entry, or the sub-tree defined by the entry, see Section 7.4
[Property inheritance], page 61.

You may define the allowed values for a particular property ‘:Xyz:’ by setting a property
‘:Xyz_ALL:’. This special property is inherited, so if you set it in a level 1 entry, it will
apply to the entire tree. When allowed values are defined, setting the corresponding property
becomes easier and is less prone to typing errors. For the example with the CD collection,
we can predefine publishers and the number of disks in a box like this:

* CD collection

:PROPERTIES:

:NDisks_ALL: 1 2 3 4

:Publisher_ALL: "Deutsche Grammophon" Philips EMI

:END:

If you want to set properties that can be inherited by any entry in a file, use a line like

Chapter 7: Properties and columns 59

#+PROPERTY: NDisks_ALL 1 2 3 4

If you want to add to the value of an existing property, append a + to the property name.
The following results in the property var having the value “foo=1 bar=2”.

#+PROPERTY: var foo=1

#+PROPERTY: var+ bar=2

It is also possible to add to the values of inherited properties. The following results in
the genres property having the value “Classic Baroque” under the Goldberg Variations

subtree.

* CD collection

** Classic

:PROPERTIES:

:GENRES: Classic

:END:

*** Goldberg Variations

:PROPERTIES:

:Title: Goldberg Variations

:Composer: J.S. Bach

:Artist: Glen Gould

:Publisher: Deutsche Grammophon

:NDisks: 1

:GENRES+: Baroque

:END:

Note that a property can only have one entry per Drawer.

Property values set with the global variable org-global-properties can be inherited
by all entries in all Org files.

The following commands help to work with properties:

M-TAB pcomplete

After an initial colon in a line, complete property keys. All keys used in the
current file will be offered as possible completions.

C-c C-x p org-set-property

Set a property. This prompts for a property name and a value. If necessary,
the property drawer is created as well.

M-x org-insert-property-drawer

Insert a property drawer into the current entry. The drawer will be inserted
early in the entry, but after the lines with planning information like deadlines.

C-c C-c org-property-action

With the cursor in a property drawer, this executes property commands.

C-c C-c s org-set-property

Set a property in the current entry. Both the property and the value can be
inserted using completion.

S-RIGHT org-property-next-allowed-value

S-LEFT org-property-previous-allowed-value

Switch property at point to the next/previous allowed value.

Chapter 7: Properties and columns 60

C-c C-c d org-delete-property

Remove a property from the current entry.

C-c C-c D org-delete-property-globally

Globally remove a property, from all entries in the current file.

C-c C-c c org-compute-property-at-point

Compute the property at point, using the operator and scope from the nearest
column format definition.

7.2 Special properties

Special properties provide an alternative access method to Org mode features, like the
TODO state or the priority of an entry, discussed in the previous chapters. This interface
exists so that you can include these states in a column view (see Section 7.5 [Column view],
page 61), or to use them in queries. The following property names are special and (except
for :CATEGORY:) should not be used as keys in the properties drawer:

TODO The TODO keyword of the entry.
TAGS The tags defined directly in the headline.
ALLTAGS All tags, including inherited ones.
CATEGORY The category of an entry.
PRIORITY The priority of the entry, a string with a single letter.
DEADLINE The deadline time string, without the angular brackets.
SCHEDULED The scheduling timestamp, without the angular brackets.
CLOSED When was this entry closed?
TIMESTAMP The first keyword-less timestamp in the entry.
TIMESTAMP_IA The first inactive timestamp in the entry.
CLOCKSUM The sum of CLOCK intervals in the subtree. org-clock-sum

must be run first to compute the values in the current buffer.
BLOCKED "t" if task is currently blocked by children or siblings
ITEM The content of the entry.
FILE The filename the entry is located in.

7.3 Property searches

To create sparse trees and special lists with selection based on properties, the same com-
mands are used as for tag searches (see Section 6.3 [Tag searches], page 56).

C-c / m or C-c \ org-match-sparse-tree

Create a sparse tree with all matching entries. With a C-u prefix argument,
ignore headlines that are not a TODO line.

C-c a m org-tags-view

Create a global list of tag/property matches from all agenda files. See
Section 10.3.3 [Matching tags and properties], page 97.

C-c a M org-tags-view

Create a global list of tag matches from all agenda files, but check only TODO
items and force checking of subitems (see variable org-tags-match-list-

sublevels).

Chapter 7: Properties and columns 61

The syntax for the search string is described in Section 10.3.3 [Matching tags and prop-
erties], page 97.

There is also a special command for creating sparse trees based on a single property:

C-c / p Create a sparse tree based on the value of a property. This first prompts for
the name of a property, and then for a value. A sparse tree is created with all
entries that define this property with the given value. If you enclose the value
in curly braces, it is interpreted as a regular expression and matched against
the property values.

7.4 Property Inheritance

The outline structure of Org mode documents lends itself to an inheritance model of prop-
erties: if the parent in a tree has a certain property, the children can inherit this property.
Org mode does not turn this on by default, because it can slow down property searches
significantly and is often not needed. However, if you find inheritance useful, you can turn
it on by setting the variable org-use-property-inheritance. It may be set to t to make
all properties inherited from the parent, to a list of properties that should be inherited, or
to a regular expression that matches inherited properties. If a property has the value ‘nil’,
this is interpreted as an explicit undefine of the property, so that inheritance search will
stop at this value and return nil.

Org mode has a few properties for which inheritance is hard-coded, at least for the
special applications for which they are used:

COLUMNS The :COLUMNS: property defines the format of column view (see Section 7.5
[Column view], page 61). It is inherited in the sense that the level where a
:COLUMNS: property is defined is used as the starting point for a column view
table, independently of the location in the subtree from where columns view is
turned on.

CATEGORY For agenda view, a category set through a :CATEGORY: property applies to the
entire subtree.

ARCHIVE For archiving, the :ARCHIVE: property may define the archive location for the
entire subtree (see Section 9.6.1 [Moving subtrees], page 90).

LOGGING The LOGGING property may define logging settings for an entry or a subtree
(see Section 5.3.2 [Tracking TODO state changes], page 47).

7.5 Column view

A great way to view and edit properties in an outline tree is column view. In column
view, each outline node is turned into a table row. Columns in this table provide access to
properties of the entries. Org mode implements columns by overlaying a tabular structure
over the headline of each item. While the headlines have been turned into a table row, you
can still change the visibility of the outline tree. For example, you get a compact table
by switching to CONTENTS view (S-TAB S-TAB, or simply c while column view is active),
but you can still open, read, and edit the entry below each headline. Or, you can switch to
column view after executing a sparse tree command and in this way get a table only for the
selected items. Column view also works in agenda buffers (see Chapter 10 [Agenda Views],
page 92) where queries have collected selected items, possibly from a number of files.

Chapter 7: Properties and columns 62

7.5.1 Defining columns

Setting up a column view first requires defining the columns. This is done by defining a
column format line.

7.5.1.1 Scope of column definitions

To define a column format for an entire file, use a line like

#+COLUMNS: %25ITEM %TAGS %PRIORITY %TODO

To specify a format that only applies to a specific tree, add a :COLUMNS: property to the
top node of that tree, for example:

** Top node for columns view

:PROPERTIES:

:COLUMNS: %25ITEM %TAGS %PRIORITY %TODO

:END:

If a :COLUMNS: property is present in an entry, it defines columns for the entry itself,
and for the entire subtree below it. Since the column definition is part of the hierarchical
structure of the document, you can define columns on level 1 that are general enough for
all sublevels, and more specific columns further down, when you edit a deeper part of the
tree.

7.5.1.2 Column attributes

A column definition sets the attributes of a column. The general definition looks like this:

%[width]property[(title)][{summary-type}]

Except for the percent sign and the property name, all items are optional. The individual
parts have the following meaning:

width An integer specifying the width of the column in characters.
If omitted, the width will be determined automatically.

property The property that should be edited in this column.
Special properties representing meta data are allowed here
as well (see Section 7.2 [Special properties], page 60)

title The header text for the column. If omitted, the property
name is used.

{summary-type} The summary type. If specified, the column values for
parent nodes are computed from the children.
Supported summary types are:
{+} Sum numbers in this column.
{+;%.1f} Like ‘+’, but format result with ‘%.1f’.
{$} Currency, short for ‘+;%.2f’.
{:} Sum times, HH:MM, plain numbers are hours.
{X} Checkbox status, ‘[X]’ if all children are ‘[X]’.
{X/} Checkbox status, ‘[n/m]’.
{X%} Checkbox status, ‘[n%]’.
{min} Smallest number in column.
{max} Largest number.
{mean} Arithmetic mean of numbers.
{:min} Smallest time value in column.

Chapter 7: Properties and columns 63

{:max} Largest time value.
{:mean} Arithmetic mean of time values.
{@min} Minimum age (in days/hours/mins/seconds).
{@max} Maximum age (in days/hours/mins/seconds).
{@mean} Arithmetic mean of ages (in days/hours/mins/seconds).
{est+} Add low-high estimates.

Be aware that you can only have one summary type for any property you include. Subse-
quent columns referencing the same property will all display the same summary information.

The est+ summary type requires further explanation. It is used for combining estimates,
expressed as low-high ranges. For example, instead of estimating a particular task will take
5 days, you might estimate it as 5-6 days if you’re fairly confident you know how much
work is required, or 1-10 days if you don’t really know what needs to be done. Both ranges
average at 5.5 days, but the first represents a more predictable delivery.

When combining a set of such estimates, simply adding the lows and highs produces
an unrealistically wide result. Instead, est+ adds the statistical mean and variance of the
sub-tasks, generating a final estimate from the sum. For example, suppose you had ten
tasks, each of which was estimated at 0.5 to 2 days of work. Straight addition produces an
estimate of 5 to 20 days, representing what to expect if everything goes either extremely
well or extremely poorly. In contrast, est+ estimates the full job more realistically, at 10-15
days.

Here is an example for a complete columns definition, along with allowed values.

:COLUMNS: %25ITEM %9Approved(Approved?){X} %Owner %11Status \1

%10Time_Estimate{:} %CLOCKSUM

:Owner_ALL: Tammy Mark Karl Lisa Don

:Status_ALL: "In progress" "Not started yet" "Finished" ""

:Approved_ALL: "[]" "[X]"

The first column, ‘%25ITEM’, means the first 25 characters of the item itself, i.e. of the
headline. You probably always should start the column definition with the ‘ITEM’ specifier.
The other specifiers create columns ‘Owner’ with a list of names as allowed values, for
‘Status’ with four different possible values, and for a checkbox field ‘Approved’. When no
width is given after the ‘%’ character, the column will be exactly as wide as it needs to
be in order to fully display all values. The ‘Approved’ column does have a modified title
(‘Approved?’, with a question mark). Summaries will be created for the ‘Time_Estimate’
column by adding time duration expressions like HH:MM, and for the ‘Approved’ column,
by providing an ‘[X]’ status if all children have been checked. The ‘CLOCKSUM’ column is
special, it lists the sum of CLOCK intervals in the subtree.

7.5.2 Using column view

Turning column view on and off
C-c C-x C-c org-columns

Turn on column view. If the cursor is before the first headline in the file, column
view is turned on for the entire file, using the #+COLUMNS definition. If the cursor
is somewhere inside the outline, this command searches the hierarchy, up from

1 Please note that the COLUMNS definition must be on a single line—it is wrapped here only be-
cause of formatting constraints.

Chapter 7: Properties and columns 64

point, for a :COLUMNS: property that defines a format. When one is found, the
column view table is established for the tree starting at the entry that contains
the :COLUMNS: property. If no such property is found, the format is taken from
the #+COLUMNS line or from the variable org-columns-default-format, and
column view is established for the current entry and its subtree.

r org-columns-redo

Recreate the column view, to include recent changes made in the buffer.

g org-columns-redo

Same as r.

q org-columns-quit

Exit column view.

Editing values
LEFT RIGHT UP DOWN

Move through the column view from field to field.

S-LEFT/RIGHT

Switch to the next/previous allowed value of the field. For this, you have to
have specified allowed values for a property.

1..9,0 Directly select the Nth allowed value, 0 selects the 10th value.

n org-columns-next-allowed-value

p org-columns-previous-allowed-value

Same as S-LEFT/RIGHT

e org-columns-edit-value

Edit the property at point. For the special properties, this will invoke the same
interface that you normally use to change that property. For example, when
editing a TAGS property, the tag completion or fast selection interface will pop
up.

C-c C-c org-columns-set-tags-or-toggle

When there is a checkbox at point, toggle it.

v org-columns-show-value

View the full value of this property. This is useful if the width of the column is
smaller than that of the value.

a org-columns-edit-allowed

Edit the list of allowed values for this property. If the list is found in the
hierarchy, the modified values is stored there. If no list is found, the new value
is stored in the first entry that is part of the current column view.

Modifying the table structure
< org-columns-narrow

> org-columns-widen

Make the column narrower/wider by one character.

S-M-RIGHT org-columns-new

Insert a new column, to the left of the current column.

Chapter 7: Properties and columns 65

S-M-LEFT org-columns-delete

Delete the current column.

7.5.3 Capturing column view

Since column view is just an overlay over a buffer, it cannot be exported or printed directly.
If you want to capture a column view, use a columnview dynamic block (see Section A.6
[Dynamic blocks], page 210). The frame of this block looks like this:

* The column view

#+BEGIN: columnview :hlines 1 :id "label"

#+END:

This dynamic block has the following parameters:

:id This is the most important parameter. Column view is a feature that is often
localized to a certain (sub)tree, and the capture block might be at a different
location in the file. To identify the tree whose view to capture, you can use 4
values:

local use the tree in which the capture block is located
global make a global view, including all headings in the file
"file:path-to-file"

run column view at the top of this file
"ID" call column view in the tree that has an :ID:

property with the value label. You can use
M-x org-id-copy to create a globally unique ID for
the current entry and copy it to the kill-ring.

:hlines When t, insert an hline after every line. When a number N, insert an hline
before each headline with level <= N .

:vlines When set to t, force column groups to get vertical lines.

:maxlevel

When set to a number, don’t capture entries below this level.

:skip-empty-rows

When set to t, skip rows where the only non-empty specifier of the column view
is ITEM.

The following commands insert or update the dynamic block:

C-c C-x i org-insert-columns-dblock

Insert a dynamic block capturing a column view. You will be prompted for the
scope or ID of the view.

C-c C-c or C-c C-x C-u org-dblock-update

Update dynamic block at point. The cursor needs to be in the #+BEGIN line of
the dynamic block.

C-u C-c C-x C-u org-update-all-dblocks

Update all dynamic blocks (see Section A.6 [Dynamic blocks], page 210). This
is useful if you have several clock table blocks, column-capturing blocks or other
dynamic blocks in a buffer.

Chapter 7: Properties and columns 66

You can add formulas to the column view table and you may add plotting instructions
in front of the table—these will survive an update of the block. If there is a #+TBLFM: after
the table, the table will actually be recalculated automatically after an update.

An alternative way to capture and process property values into a table is provided by
Eric Schulte’s ‘org-collector.el’ which is a contributed package2. It provides a general
API to collect properties from entries in a certain scope, and arbitrary Lisp expressions to
process these values before inserting them into a table or a dynamic block.

7.6 The Property API

There is a full API for accessing and changing properties. This API can be used by Emacs
Lisp programs to work with properties and to implement features based on them. For more
information see Section A.9 [Using the property API], page 214.

2 Contributed packages are not part of Emacs, but are distributed with the main distribution of Org (visit
http://orgmode.org).

http://orgmode.org

Chapter 8: Dates and times 67

8 Dates and times

To assist project planning, TODO items can be labeled with a date and/or a time. The
specially formatted string carrying the date and time information is called a timestamp in
Org mode. This may be a little confusing because timestamp is often used as indicating
when something was created or last changed. However, in Org mode this term is used in a
much wider sense.

8.1 Timestamps, deadlines, and scheduling

A timestamp is a specification of a date (possibly with a time or a range of times) in a
special format, either ‘<2003-09-16 Tue>’1 or ‘<2003-09-16 Tue 09:39>’ or ‘<2003-09-16
Tue 12:00-12:30>’2. A timestamp can appear anywhere in the headline or body of an Org
tree entry. Its presence causes entries to be shown on specific dates in the agenda (see
Section 10.3.1 [Weekly/daily agenda], page 94). We distinguish:

Plain timestamp; Event; Appointment
A simple timestamp just assigns a date/time to an item. This is just like writing
down an appointment or event in a paper agenda. In the timeline and agenda
displays, the headline of an entry associated with a plain timestamp will be
shown exactly on that date.

* Meet Peter at the movies <2006-11-01 Wed 19:15>

* Discussion on climate change <2006-11-02 Thu 20:00-22:00>

Timestamp with repeater interval
A timestamp may contain a repeater interval, indicating that it applies not only
on the given date, but again and again after a certain interval of N days (d),
weeks (w), months (m), or years (y). The following will show up in the agenda
every Wednesday:

* Pick up Sam at school <2007-05-16 Wed 12:30 +1w>

Diary-style sexp entries
For more complex date specifications, Org mode supports using the special sexp
diary entries implemented in the Emacs calendar/diary package3. For example
with optional time

* 22:00-23:00 The nerd meeting on every 2nd Thursday of the month

<%%(org-float t 4 2)>

1 In this simplest form, the day name is optional when you type the date yourself. However, any dates
inserted or modified by Org will add that day name, for reading convenience.

2 This is inspired by the standard ISO 8601 date/time format. To use an alternative format, see
Section 8.2.2 [Custom time format], page 71.

3 When working with the standard diary sexp functions, you need to be very careful with the order of
the arguments. That order depend evilly on the variable calendar-date-style (or, for older Emacs
versions, european-calendar-style). For example, to specify a date December 12, 2005, the call might
look like (diary-date 12 1 2005) or (diary-date 1 12 2005) or (diary-date 2005 12 1), depending on
the settings. This has been the source of much confusion. Org mode users can resort to special versions
of these functions like org-date or org-anniversary. These work just like the corresponding diary-

functions, but with stable ISO order of arguments (year, month, day) wherever applicable, independent
of the value of calendar-date-style.

Chapter 8: Dates and times 68

Time/Date range
Two timestamps connected by ‘--’ denote a range. The headline will be shown
on the first and last day of the range, and on any dates that are displayed and
fall in the range. Here is an example:

** Meeting in Amsterdam

<2004-08-23 Mon>--<2004-08-26 Thu>

Inactive timestamp
Just like a plain timestamp, but with square brackets instead of angular ones.
These timestamps are inactive in the sense that they do not trigger an entry
to show up in the agenda.

* Gillian comes late for the fifth time [2006-11-01 Wed]

8.2 Creating timestamps

For Org mode to recognize timestamps, they need to be in the specific format. All commands
listed below produce timestamps in the correct format.

C-c . org-time-stamp

Prompt for a date and insert a corresponding timestamp. When the cursor is
at an existing timestamp in the buffer, the command is used to modify this
timestamp instead of inserting a new one. When this command is used twice
in succession, a time range is inserted.

C-c ! org-time-stamp-inactive

Like C-c ., but insert an inactive timestamp that will not cause an agenda
entry.

C-u C-c .

C-u C-c ! Like C-c . and C-c !, but use the alternative format which contains date and
time. The default time can be rounded to multiples of 5 minutes, see the option
org-time-stamp-rounding-minutes.

C-c C-c Normalize timestamp, insert/fix day name if missing or wrong.

C-c < org-date-from-calendar

Insert a timestamp corresponding to the cursor date in the Calendar.

C-c > org-goto-calendar

Access the Emacs calendar for the current date. If there is a timestamp in the
current line, go to the corresponding date instead.

C-c C-o org-open-at-point

Access the agenda for the date given by the timestamp or -range at point (see
Section 10.3.1 [Weekly/daily agenda], page 94).

S-LEFT org-timestamp-down-day

S-RIGHT org-timestamp-up-day

Change date at cursor by one day. These key bindings conflict with shift-
selection and related modes (see Section 15.10.2 [Conflicts], page 201).

Chapter 8: Dates and times 69

S-UP org-timestamp-up

S-DOWN org-timestamp-down-down

Change the item under the cursor in a timestamp. The cursor can be on a year,
month, day, hour or minute. When the timestamp contains a time range like
‘15:30-16:30’, modifying the first time will also shift the second, shifting the
time block with constant length. To change the length, modify the second time.
Note that if the cursor is in a headline and not at a timestamp, these same keys
modify the priority of an item. (see Section 5.4 [Priorities], page 50). The key
bindings also conflict with shift-selection and related modes (see Section 15.10.2
[Conflicts], page 201).

C-c C-y org-evaluate-time-range

Evaluate a time range by computing the difference between start and end.
With a prefix argument, insert result after the time range (in a table: into the
following column).

8.2.1 The date/time prompt

When Org mode prompts for a date/time, the default is shown in default date/time format,
and the prompt therefore seems to ask for a specific format. But it will in fact accept
any string containing some date and/or time information, and it is really smart about
interpreting your input. You can, for example, use C-y to paste a (possibly multi-line)
string copied from an email message. Org mode will find whatever information is in there
and derive anything you have not specified from the default date and time. The default
is usually the current date and time, but when modifying an existing timestamp, or when
entering the second stamp of a range, it is taken from the stamp in the buffer. When filling
in information, Org mode assumes that most of the time you will want to enter a date in
the future: if you omit the month/year and the given day/month is before today, it will
assume that you mean a future date4. If the date has been automatically shifted into the
future, the time prompt will show this with ‘(=>F).’

For example, let’s assume that today is June 13, 2006. Here is how various inputs will
be interpreted, the items filled in by Org mode are in bold.

3-2-5 ⇒ 2003-02-05

2/5/3 ⇒ 2003-02-05

14 ⇒ 2006-06-14
12 ⇒ 2006-07-12
2/5 ⇒ 2007-02-05
Fri ⇒ nearest Friday (default date or later)

sep 15 ⇒ 2006-09-15
feb 15 ⇒ 2007-02-15
sep 12 9 ⇒ 2009-09-12

12:45 ⇒ 2006-06-13 12:45

22 sept 0:34 ⇒ 2006-09-22 0:34

w4 ⇒ ISO week for of the current year 2006
2012 w4 fri ⇒ Friday of ISO week 4 in 2012

4 See the variable org-read-date-prefer-future. You may set that variable to the symbol time to even
make a time before now shift the date to tomorrow.

Chapter 8: Dates and times 70

2012-w04-5 ⇒ Same as above

Furthermore you can specify a relative date by giving, as the first thing in the input: a
plus/minus sign, a number and a letter ([dwmy]) to indicate change in days, weeks, months,
or years. With a single plus or minus, the date is always relative to today. With a double
plus or minus, it is relative to the default date. If instead of a single letter, you use the
abbreviation of day name, the date will be the Nth such day, e.g.

+0 ⇒ today

. ⇒ today

+4d ⇒ four days from today

+4 ⇒ same as above

+2w ⇒ two weeks from today

++5 ⇒ five days from default date

+2tue ⇒ second Tuesday from now.

The function understands English month and weekday abbreviations. If you want to use
unabbreviated names and/or other languages, configure the variables parse-time-months
and parse-time-weekdays.

Not all dates can be represented in a given Emacs implementation. By default Org mode
forces dates into the compatibility range 1970–2037 which works on all Emacs implemen-
tations. If you want to use dates outside of this range, read the docstring of the variable
org-read-date-force-compatible-dates.

You can specify a time range by giving start and end times or by giving a start time
and a duration (in HH:MM format). Use one or two dash(es) as the separator in the former
case and use ’+’ as the separator in the latter case, e.g.

11am-1:15pm ⇒ 11:00-13:15

11am--1:15pm ⇒ same as above

11am+2:15 ⇒ same as above

Parallel to the minibuffer prompt, a calendar is popped up5. When you exit the date
prompt, either by clicking on a date in the calendar, or by pressing RET, the date selected
in the calendar will be combined with the information entered at the prompt. You can
control the calendar fully from the minibuffer:

RET Choose date at cursor in calendar.
mouse-1 Select date by clicking on it.
S-RIGHT/LEFT One day forward/backward.
S-DOWN/UP One week forward/backward.
M-S-RIGHT/LEFT One month forward/backward.
> / < Scroll calendar forward/backward by one month.
M-v / C-v Scroll calendar forward/backward by 3 months.

The actions of the date/time prompt may seem complex, but I assure you they will grow
on you, and you will start getting annoyed by pretty much any other way of entering a
date/time out there. To help you understand what is going on, the current interpretation
of your input will be displayed live in the minibuffer6.

5 If you don’t need/want the calendar, configure the variable org-popup-calendar-for-date-prompt.
6 If you find this distracting, turn the display of with org-read-date-display-live.

Chapter 8: Dates and times 71

8.2.2 Custom time format

Org mode uses the standard ISO notation for dates and times as it is defined in ISO 8601.
If you cannot get used to this and require another representation of date and time to keep
you happy, you can get it by customizing the variables org-display-custom-times and
org-time-stamp-custom-formats.

C-c C-x C-t org-toggle-time-stamp-overlays

Toggle the display of custom formats for dates and times.

Org mode needs the default format for scanning, so the custom date/time format does not
replace the default format—instead it is put over the default format using text properties.
This has the following consequences:

• You cannot place the cursor onto a timestamp anymore, only before or after.

• The S-UP/DOWN keys can no longer be used to adjust each component of a timestamp.
If the cursor is at the beginning of the stamp, S-UP/DOWN will change the stamp by one
day, just like S-LEFT/RIGHT. At the end of the stamp, the time will be changed by one
minute.

• If the timestamp contains a range of clock times or a repeater, these will not be overlaid,
but remain in the buffer as they were.

• When you delete a timestamp character-by-character, it will only disappear from the
buffer after all (invisible) characters belonging to the ISO timestamp have been re-
moved.

• If the custom timestamp format is longer than the default and you are using dates in
tables, table alignment will be messed up. If the custom format is shorter, things do
work as expected.

8.3 Deadlines and scheduling

A timestamp may be preceded by special keywords to facilitate planning:

DEADLINE
Meaning: the task (most likely a TODO item, though not necessarily) is sup-
posed to be finished on that date.

On the deadline date, the task will be listed in the agenda. In addition, the
agenda for today will carry a warning about the approaching or missed deadline,
starting org-deadline-warning-days before the due date, and continuing until
the entry is marked DONE. An example:

*** TODO write article about the Earth for the Guide

DEADLINE: <2004-02-29 Sun>

The editor in charge is [[bbdb:Ford Prefect]]

You can specify a different lead time for warnings for a specific deadlines using
the following syntax. Here is an example with a warning period of 5 days
DEADLINE: <2004-02-29 Sun -5d>.

SCHEDULED
Meaning: you are planning to start working on that task on the given date.

Chapter 8: Dates and times 72

The headline will be listed under the given date7. In addition, a reminder that
the scheduled date has passed will be present in the compilation for today, until
the entry is marked DONE, i.e. the task will automatically be forwarded until
completed.

*** TODO Call Trillian for a date on New Years Eve.

SCHEDULED: <2004-12-25 Sat>

Important: Scheduling an item in Org mode should not be understood in the
same way that we understand scheduling a meeting. Setting a date for a meet-
ing is just a simple appointment, you should mark this entry with a simple
plain timestamp, to get this item shown on the date where it applies. This
is a frequent misunderstanding by Org users. In Org mode, scheduling means
setting a date when you want to start working on an action item.

You may use timestamps with repeaters in scheduling and deadline entries. Org mode
will issue early and late warnings based on the assumption that the timestamp represents
the nearest instance of the repeater. However, the use of diary sexp entries like <%%(org-

float t 42)> in scheduling and deadline timestamps is limited. Org mode does not know
enough about the internals of each sexp function to issue early and late warnings. However,
it will show the item on each day where the sexp entry matches.

8.3.1 Inserting deadlines or schedules

The following commands allow you to quickly insert8 a deadline or to schedule an item:

C-c C-d org-deadline

Insert ‘DEADLINE’ keyword along with a stamp. The insertion will happen in the
line directly following the headline. Any CLOSED timestamp will be removed.
When called with a prefix arg, an existing deadline will be removed from the
entry. Depending on the variable org-log-redeadline9, a note will be taken
when changing an existing deadline.

C-c C-s org-schedule

Insert ‘SCHEDULED’ keyword along with a stamp. The insertion will happen
in the line directly following the headline. Any CLOSED timestamp will be
removed. When called with a prefix argument, remove the scheduling date
from the entry. Depending on the variable org-log-reschedule10, a note will
be taken when changing an existing scheduling time.

C-c C-x C-k org-mark-entry-for-agenda-action

Mark the current entry for agenda action. After you have marked the entry
like this, you can open the agenda or the calendar to find an appropriate date.
With the cursor on the selected date, press k s or k d to schedule the marked
item.

7 It will still be listed on that date after it has been marked DONE. If you don’t like this, set the variable
org-agenda-skip-scheduled-if-done.

8 The ‘SCHEDULED’ and ‘DEADLINE’ dates are inserted on the line right below the headline. Don’t put any
text between this line and the headline.

9 with corresponding #+STARTUP keywords logredeadline, lognoteredeadline, and nologredeadline
10 with corresponding #+STARTUP keywords logreschedule, lognotereschedule, and nologreschedule

Chapter 8: Dates and times 73

C-c / d org-check-deadlines

Create a sparse tree with all deadlines that are either past-due, or which will
become due within org-deadline-warning-days. With C-u prefix, show all
deadlines in the file. With a numeric prefix, check that many days. For example,
C-1 C-c / d shows all deadlines due tomorrow.

C-c / b org-check-before-date

Sparse tree for deadlines and scheduled items before a given date.

C-c / a org-check-after-date

Sparse tree for deadlines and scheduled items after a given date.

Note that org-schedule and org-deadline supports setting the date by indicating a
relative time: e.g. +1d will set the date to the next day after today, and –1w will set the
date to the previous week before any current timestamp.

8.3.2 Repeated tasks

Some tasks need to be repeated again and again. Org mode helps to organize such tasks
using a so-called repeater in a DEADLINE, SCHEDULED, or plain timestamp. In the
following example

** TODO Pay the rent

DEADLINE: <2005-10-01 Sat +1m>

the +1m is a repeater; the intended interpretation is that the task has a deadline on <2005-
10-01> and repeats itself every (one) month starting from that time. If you need both a
repeater and a special warning period in a deadline entry, the repeater should come first
and the warning period last: DEADLINE: <2005-10-01 Sat +1m -3d>.

Deadlines and scheduled items produce entries in the agenda when they are over-due,
so it is important to be able to mark such an entry as completed once you have done so.
When you mark a DEADLINE or a SCHEDULE with the TODO keyword DONE, it will
no longer produce entries in the agenda. The problem with this is, however, that then also
the next instance of the repeated entry will not be active. Org mode deals with this in the
following way: When you try to mark such an entry DONE (using C-c C-t), it will shift
the base date of the repeating timestamp by the repeater interval, and immediately set
the entry state back to TODO11. In the example above, setting the state to DONE would
actually switch the date like this:

** TODO Pay the rent

DEADLINE: <2005-11-01 Tue +1m>

A timestamp12 will be added under the deadline, to keep a record that you actually
acted on the previous instance of this deadline.

As a consequence of shifting the base date, this entry will no longer be visible in the
agenda when checking past dates, but all future instances will be visible.

11 In fact, the target state is taken from, in this sequence, the REPEAT_TO_STATE property or the variable
org-todo-repeat-to-state. If neither of these is specified, the target state defaults to the first state of
the TODO state sequence.

12 You can change this using the option org-log-repeat, or the #+STARTUP options logrepeat,
lognoterepeat, and nologrepeat. With lognoterepeat, you will also be prompted for a note.

Chapter 8: Dates and times 74

With the ‘+1m’ cookie, the date shift will always be exactly one month. So if you have
not paid the rent for three months, marking this entry DONE will still keep it as an overdue
deadline. Depending on the task, this may not be the best way to handle it. For example,
if you forgot to call your father for 3 weeks, it does not make sense to call him 3 times in a
single day to make up for it. Finally, there are tasks like changing batteries which should
always repeat a certain time after the last time you did it. For these tasks, Org mode has
special repeaters ‘++’ and ‘.+’. For example:

** TODO Call Father

DEADLINE: <2008-02-10 Sun ++1w>

Marking this DONE will shift the date by at least one week,

but also by as many weeks as it takes to get this date into

the future. However, it stays on a Sunday, even if you called

and marked it done on Saturday.

** TODO Check the batteries in the smoke detectors

DEADLINE: <2005-11-01 Tue .+1m>

Marking this DONE will shift the date to one month after

today.

You may have both scheduling and deadline information for a specific task—just make
sure that the repeater intervals on both are the same.

An alternative to using a repeater is to create a number of copies of a task subtree,
with dates shifted in each copy. The command C-c C-x c was created for this purpose, it
is described in Section 2.5 [Structure editing], page 8.

8.4 Clocking work time

Org mode allows you to clock the time you spend on specific tasks in a project. When you
start working on an item, you can start the clock. When you stop working on that task,
or when you mark the task done, the clock is stopped and the corresponding time interval
is recorded. It also computes the total time spent on each subtree of a project. And it
remembers a history or tasks recently clocked, to that you can jump quickly between a
number of tasks absorbing your time.

To save the clock history across Emacs sessions, use

(setq org-clock-persist 'history)

(org-clock-persistence-insinuate)

When you clock into a new task after resuming Emacs, the incomplete clock13 will be
found (see Section 8.4.3 [Resolving idle time], page 78) and you will be prompted about
what to do with it.

8.4.1 Clocking commands

C-c C-x C-i org-clock-in

Start the clock on the current item (clock-in). This inserts the CLOCK key-
word together with a timestamp. If this is not the first clocking of this item, the
multiple CLOCK lines will be wrapped into a :LOGBOOK: drawer (see also the

13 To resume the clock under the assumption that you have worked on this task while outside Emacs, use
(setq org-clock-persist t).

Chapter 8: Dates and times 75

variable org-clock-into-drawer). You can also overrule the setting of this
variable for a subtree by setting a CLOCK_INTO_DRAWER or LOG_INTO_DRAWER

property. When called with a C-u prefix argument, select the task from a list of
recently clocked tasks. With two C-u C-u prefixes, clock into the task at point
and mark it as the default task. The default task will always be available when
selecting a clocking task, with letter d.
While the clock is running, the current clocking time is shown in the mode
line, along with the title of the task. The clock time shown will be all time
ever clocked for this task and its children. If the task has an effort estimate
(see Section 8.5 [Effort estimates], page 79), the mode line displays the current
clocking time against it14 If the task is a repeating one (see Section 8.3.2 [Re-
peated tasks], page 73), only the time since the last reset of the task15 will be
shown. More control over what time is shown can be exercised with the CLOCK_
MODELINE_TOTAL property. It may have the values current to show only the
current clocking instance, today to show all time clocked on this tasks today
(see also the variable org-extend-today-until), all to include all time, or
auto which is the default16.
Clicking with mouse-1 onto the mode line entry will pop up a menu with clock-
ing options.

C-c C-x C-o org-clock-out

Stop the clock (clock-out). This inserts another timestamp at the same location
where the clock was last started. It also directly computes the resulting time in
inserts it after the time range as ‘=> HH:MM’. See the variable org-log-note-

clock-out for the possibility to record an additional note together with the
clock-out timestamp17.

C-c C-x C-e org-clock-modify-effort-estimate

Update the effort estimate for the current clock task.

C-c C-c or C-c C-y org-evaluate-time-range

Recompute the time interval after changing one of the timestamps. This is
only necessary if you edit the timestamps directly. If you change them with
S-CURSOR keys, the update is automatic.

C-S-UP/DOWN org-clock-timestamps-up/down

On CLOCK log lines, increase/decrease both timestamps at the same time so that
duration keeps the same.

C-c C-t org-todo

Changing the TODO state of an item to DONE automatically stops the clock
if it is running in this same item.

C-c C-x C-x org-clock-cancel

Cancel the current clock. This is useful if a clock was started by mistake, or if
you ended up working on something else.

14 To add an effort estimate “on the fly”, hook a function doing this to org-clock-in-prepare-hook.
15 as recorded by the LAST_REPEAT property
16 See also the variable org-clock-modeline-total.
17 The corresponding in-buffer setting is: #+STARTUP: lognoteclock-out

Chapter 8: Dates and times 76

C-c C-x C-j org-clock-goto

Jump to the headline of the currently clocked in task. With a C-u prefix arg,
select the target task from a list of recently clocked tasks.

C-c C-x C-d org-clock-display

Display time summaries for each subtree in the current buffer. This puts over-
lays at the end of each headline, showing the total time recorded under that
heading, including the time of any subheadings. You can use visibility cycling
to study the tree, but the overlays disappear when you change the buffer (see
variable org-remove-highlights-with-change) or press C-c C-c.

The l key may be used in the timeline (see Section 10.3.4 [Timeline], page 99) and in
the agenda (see Section 10.3.1 [Weekly/daily agenda], page 94) to show which tasks have
been worked on or closed during a day.

8.4.2 The clock table

Org mode can produce quite complex reports based on the time clocking information. Such
a report is called a clock table, because it is formatted as one or several Org tables.

C-c C-x C-r org-clock-report

Insert a dynamic block (see Section A.6 [Dynamic blocks], page 210) containing
a clock report as an Org mode table into the current file. When the cursor is
at an existing clock table, just update it. When called with a prefix argument,
jump to the first clock report in the current document and update it. The clock
table always includes also trees with :ARCHIVE: tag.

C-c C-c or C-c C-x C-u org-dblock-update

Update dynamic block at point. The cursor needs to be in the #+BEGIN line of
the dynamic block.

C-u C-c C-x C-u

Update all dynamic blocks (see Section A.6 [Dynamic blocks], page 210). This
is useful if you have several clock table blocks in a buffer.

S-LEFT

S-RIGHT org-clocktable-try-shift

Shift the current :block interval and update the table. The cursor needs to be
in the #+BEGIN: clocktable line for this command. If :block is today, it will
be shifted to today-1 etc.

Here is an example of the frame for a clock table as it is inserted into the buffer with
the C-c C-x C-r command:

#+BEGIN: clocktable :maxlevel 2 :emphasize nil :scope file

#+END: clocktable

The ‘BEGIN’ line and specify a number of options to define the scope, structure, and for-
matting of the report. Defaults for all these options can be configured in the variable
org-clocktable-defaults.

First there are options that determine which clock entries are to be selected:

:maxlevel Maximum level depth to which times are listed in the table.
Clocks at deeper levels will be summed into the upper level.

Chapter 8: Dates and times 77

:scope The scope to consider. This can be any of the following:
nil the current buffer or narrowed region
file the full current buffer
subtree the subtree where the clocktable is located
treeN the surrounding level N tree, for example tree3
tree the surrounding level 1 tree
agenda all agenda files
("file"..) scan these files
file-with-archives current file and its archives
agenda-with-archives all agenda files, including archives

:block The time block to consider. This block is specified either
absolute, or relative to the current time and may be any of
these formats:
2007-12-31 New year eve 2007
2007-12 December 2007
2007-W50 ISO-week 50 in 2007
2007-Q2 2nd quarter in 2007
2007 the year 2007
today, yesterday, today-N a relative day
thisweek, lastweek, thisweek-N a relative week
thismonth, lastmonth, thismonth-N a relative month
thisyear, lastyear, thisyear-N a relative year
Use S-LEFT/RIGHT keys to shift the time interval.

:tstart A time string specifying when to start considering times.
:tend A time string specifying when to stop considering times.
:step week or day, to split the table into chunks.

To use this, :block or :tstart, :tend are needed.
:stepskip0 Do not show steps that have zero time.
:fileskip0 Do not show table sections from files which did not contribute.
:tags A tags match to select entries that should contribute. See

Section 10.3.3 [Matching tags and properties], page 97 for the match syntax.

Then there are options which determine the formatting of the table. There options are
interpreted by the function org-clocktable-write-default, but you can specify your own
function using the :formatter parameter.

:emphasize When t, emphasize level one and level two items.
:lang Language18 to use for descriptive cells like "Task".
:link Link the item headlines in the table to their origins.
:narrow An integer to limit the width of the headline column in

the org table. If you write it like ‘50!’, then the
headline will also be shortened in export.

:indent Indent each headline field according to its level.
:tcolumns Number of columns to be used for times. If this is smaller

than :maxlevel, lower levels will be lumped into one column.
:level Should a level number column be included?
:compact Abbreviation for :level nil :indent t :narrow 40! :tcolumns 1

18 Language terms can be set through the variable org-clock-clocktable-language-setup.

Chapter 8: Dates and times 78

All are overwritten except if there is an explicit :narrow
:timestamp A timestamp for the entry, when available. Look for SCHEDULED,

DEADLINE, TIMESTAMP and TIMESTAMP IA, in this order.
:properties List of properties that should be shown in the table. Each

property will get its own column.
:inherit-props When this flag is t, the values for :properties will be inherited.
:formula Content of a #+TBLFM line to be added and evaluated.

As a special case, ‘:formula %’ adds a column with % time.
If you do not specify a formula here, any existing formula
below the clock table will survive updates and be evaluated.

:formatter A function to format clock data and insert it into the buffer.

To get a clock summary of the current level 1 tree, for the current day, you could write

#+BEGIN: clocktable :maxlevel 2 :block today :scope tree1 :link t

#+END: clocktable

and to use a specific time range you could write19

#+BEGIN: clocktable :tstart "<2006-08-10 Thu 10:00>"

:tend "<2006-08-10 Thu 12:00>"

#+END: clocktable

A summary of the current subtree with % times would be

#+BEGIN: clocktable :scope subtree :link t :formula %

#+END: clocktable

A horizontally compact representation of everything clocked during last week would be

#+BEGIN: clocktable :scope agenda :block lastweek :compact t

#+END: clocktable

8.4.3 Resolving idle time

If you clock in on a work item, and then walk away from your computer—perhaps to take
a phone call—you often need to “resolve” the time you were away by either subtracting it
from the current clock, or applying it to another one.

By customizing the variable org-clock-idle-time to some integer, such as 10 or 15,
Emacs can alert you when you get back to your computer after being idle for that many
minutes20, and ask what you want to do with the idle time. There will be a question waiting
for you when you get back, indicating how much idle time has passed (constantly updated
with the current amount), as well as a set of choices to correct the discrepancy:

k To keep some or all of the minutes and stay clocked in, press k. Org will ask
how many of the minutes to keep. Press RET to keep them all, effectively
changing nothing, or enter a number to keep that many minutes.

19 Note that all parameters must be specified in a single line—the line is broken here only to fit it into the
manual.

20 On computers using Mac OS X, idleness is based on actual user idleness, not just Emacs’ idle time. For
X11, you can install a utility program ‘x11idle.c’, available in the UTILITIES directory of the Org git
distribution, to get the same general treatment of idleness. On other systems, idle time refers to Emacs
idle time only.

Chapter 8: Dates and times 79

K If you use the shift key and press K, it will keep however many minutes you
request and then immediately clock out of that task. If you keep all of the
minutes, this is the same as just clocking out of the current task.

s To keep none of the minutes, use s to subtract all the away time from the clock,
and then check back in from the moment you returned.

S To keep none of the minutes and just clock out at the start of the away time,
use the shift key and press S. Remember that using shift will always leave you
clocked out, no matter which option you choose.

C To cancel the clock altogether, use C. Note that if instead of canceling you
subtract the away time, and the resulting clock amount is less than a minute,
the clock will still be canceled rather than clutter up the log with an empty
entry.

What if you subtracted those away minutes from the current clock, and now want to
apply them to a new clock? Simply clock in to any task immediately after the subtraction.
Org will notice that you have subtracted time “on the books”, so to speak, and will ask if
you want to apply those minutes to the next task you clock in on.

There is one other instance when this clock resolution magic occurs. Say you were
clocked in and hacking away, and suddenly your cat chased a mouse who scared a hamster
that crashed into your UPS’s power button! You suddenly lose all your buffers, but thanks
to auto-save you still have your recent Org mode changes, including your last clock in.

If you restart Emacs and clock into any task, Org will notice that you have a dangling
clock which was never clocked out from your last session. Using that clock’s starting time
as the beginning of the unaccounted-for period, Org will ask how you want to resolve that
time. The logic and behavior is identical to dealing with away time due to idleness; it is
just happening due to a recovery event rather than a set amount of idle time.

You can also check all the files visited by your Org agenda for dangling clocks at any
time using M-x org-resolve-clocks.

8.5 Effort estimates

If you want to plan your work in a very detailed way, or if you need to produce offers with
quotations of the estimated work effort, you may want to assign effort estimates to entries.
If you are also clocking your work, you may later want to compare the planned effort with
the actual working time, a great way to improve planning estimates. Effort estimates are
stored in a special property ‘Effort’21. You can set the effort for an entry with the following
commands:

C-c C-x e org-set-effort

Set the effort estimate for the current entry. With a numeric prefix argument,
set it to the Nth allowed value (see below). This command is also accessible
from the agenda with the e key.

C-c C-x C-e org-clock-modify-effort-estimate

Modify the effort estimate of the item currently being clocked.

21 You may change the property being used with the variable org-effort-property.

Chapter 8: Dates and times 80

Clearly the best way to work with effort estimates is through column view (see Section 7.5
[Column view], page 61). You should start by setting up discrete values for effort estimates,
and a COLUMNS format that displays these values together with clock sums (if you want to
clock your time). For a specific buffer you can use

#+PROPERTY: Effort_ALL 0 0:10 0:30 1:00 2:00 3:00 4:00 5:00 6:00 7:00

#+COLUMNS: %40ITEM(Task) %17Effort(Estimated Effort){:} %CLOCKSUM

or, even better, you can set up these values globally by customizing the variables org-

global-properties and org-columns-default-format. In particular if you want to use
this setup also in the agenda, a global setup may be advised.

The way to assign estimates to individual items is then to switch to column mode, and
to use S-RIGHT and S-LEFT to change the value. The values you enter will immediately be
summed up in the hierarchy. In the column next to it, any clocked time will be displayed.

If you switch to column view in the daily/weekly agenda, the effort column will sum-
marize the estimated work effort for each day22, and you can use this to find space in your
schedule. To get an overview of the entire part of the day that is committed, you can set
the option org-agenda-columns-add-appointments-to-effort-sum. The appointments
on a day that take place over a specified time interval will then also be added to the load
estimate of the day.

Effort estimates can be used in secondary agenda filtering that is triggered with the
/ key in the agenda (see Section 10.5 [Agenda commands], page 102). If you have these
estimates defined consistently, two or three key presses will narrow down the list to stuff
that fits into an available time slot.

8.6 Taking notes with a relative timer

When taking notes during, for example, a meeting or a video viewing, it can be useful to
have access to times relative to a starting time. Org provides such a relative timer and
make it easy to create timed notes.

C-c C-x . org-timer

Insert a relative time into the buffer. The first time you use this, the timer will
be started. When called with a prefix argument, the timer is restarted.

C-c C-x - org-timer-item

Insert a description list item with the current relative time. With a prefix
argument, first reset the timer to 0.

M-RET org-insert-heading

Once the timer list is started, you can also use M-RET to insert new timer items.

C-c C-x , Pause the timer, or continue it if it is already paused (org-timer-pause-or-
continue).

C-u C-c C-x ,

Stop the timer. After this, you can only start a new timer, not continue the old
one. This command also removes the timer from the mode line.

22 Please note the pitfalls of summing hierarchical data in a flat list (see Section 10.8 [Agenda column view],
page 115).

Chapter 8: Dates and times 81

C-c C-x 0 org-timer-start

Reset the timer without inserting anything into the buffer. By default, the
timer is reset to 0. When called with a C-u prefix, reset the timer to specific
starting offset. The user is prompted for the offset, with a default taken from
a timer string at point, if any, So this can be used to restart taking notes after
a break in the process. When called with a double prefix argument C-u C-u,
change all timer strings in the active region by a certain amount. This can
be used to fix timer strings if the timer was not started at exactly the right
moment.

8.7 Countdown timer

Calling org-timer-set-timer from an Org mode buffer runs a countdown timer. Use ;

from agenda buffers, C-C C-X ; everywhere else.

org-timer-set-timer prompts the user for a duration and displays a countdown timer
in the modeline. org-timer-default-timer sets the default countdown value. Giving a
prefix numeric argument overrides this default value.

Chapter 9: Capture - Refile - Archive 82

9 Capture - Refile - Archive

An important part of any organization system is the ability to quickly capture new ideas
and tasks, and to associate reference material with them. Org does this using a process
called capture. It also can store files related to a task (attachments) in a special directory.
Once in the system, tasks and projects need to be moved around. Moving completed project
trees to an archive file keeps the system compact and fast.

9.1 Capture

Org’s method for capturing new items is heavily inspired by John Wiegley
excellent remember package. Up to version 6.36 Org used a special setup for
‘remember.el’. ‘org-remember.el’ is still part of Org mode for backward compat-
ibility with existing setups. You can find the documentation for org-remember at
http://orgmode.org/org-remember.pdf.

The new capturing setup described here is preferred and should be used by new users.
To convert your org-remember-templates, run the command

M-x org-capture-import-remember-templates RET

and then customize the new variable with M-x customize-variable org-capture-

templates, check the result, and save the customization. You can then use both remember
and capture until you are familiar with the new mechanism.

Capture lets you quickly store notes with little interruption of your work flow. The basic
process of capturing is very similar to remember, but Org does enhance it with templates
and more.

9.1.1 Setting up capture

The following customization sets a default target file for notes, and defines a global key1

for capturing new material.

(setq org-default-notes-file (concat org-directory "/notes.org"))

(define-key global-map "\C-cc" 'org-capture)

9.1.2 Using capture

C-c c org-capture

Call the command org-capture. Note that this keybinding is global and not
active by default - you need to install it. If you have templates defined see
Section 9.1.3 [Capture templates], page 83, it will offer these templates for
selection or use a new Org outline node as the default template. It will insert
the template into the target file and switch to an indirect buffer narrowed to
this new node. You may then insert the information you want.

C-c C-c org-capture-finalize

Once you have finished entering information into the capture buffer, C-c C-c

will return you to the window configuration before the capture process, so that
you can resume your work without further distraction. When called with a
prefix arg, finalize and then jump to the captured item.

1 Please select your own key, C-c c is only a suggestion.

http://orgmode.org/org-remember.pdf

Chapter 9: Capture - Refile - Archive 83

C-c C-w org-capture-refile

Finalize the capture process by refiling (see Section 9.5 [Refiling notes], page 89)
the note to a different place. Please realize that this is a normal refiling com-
mand that will be executed—so the cursor position at the moment you run this
command is important. If you have inserted a tree with a parent and children,
first move the cursor back to the parent. Any prefix argument given to this
command will be passed on to the org-refile command.

C-c C-k org-capture-kill

Abort the capture process and return to the previous state.

You can also call org-capture in a special way from the agenda, using the k c key
combination. With this access, any timestamps inserted by the selected capture template
will default to the cursor date in the agenda, rather than to the current date.

To find the locations of the last stored capture, use org-capture with prefix commands:

C-u C-c c

Visit the target location of a capture template. You get to select the template
in the usual way.

C-u C-u C-c c

Visit the last stored capture item in its buffer.

9.1.3 Capture templates

You can use templates for different types of capture items, and for different target locations.
The easiest way to create such templates is through the customize interface.

C-c c C Customize the variable org-capture-templates.

Before we give the formal description of template definitions, let’s look at an example.
Say you would like to use one template to create general TODO entries, and you want to
put these entries under the heading ‘Tasks’ in your file ‘~/org/gtd.org’. Also, a date tree
in the file ‘journal.org’ should capture journal entries. A possible configuration would
look like:

(setq org-capture-templates

'(("t" "Todo" entry (file+headline "~/org/gtd.org" "Tasks")

"* TODO %?\n %i\n %a")

("j" "Journal" entry (file+datetree "~/org/journal.org")

"* %?\nEntered on %U\n %i\n %a")))

If you then press C-c c t, Org will prepare the template for you like this:

* TODO

[[file:link to where you initiated capture]]

During expansion of the template, %a has been replaced by a link to the location from
where you called the capture command. This can be extremely useful for deriving tasks
from emails, for example. You fill in the task definition, press C-c C-c and Org returns you
to the same place where you started the capture process.

To define special keys to capture to a particular template without going through the
interactive template selection, you can create your key binding like this:

(define-key global-map "\C-cx"

(lambda () (interactive) (org-capture nil "x")))

Chapter 9: Capture - Refile - Archive 84

9.1.3.1 Template elements

Now lets look at the elements of a template definition. Each entry in org-capture-

templates is a list with the following items:

keys The keys that will select the template, as a string, characters only, for example
"a" for a template to be selected with a single key, or "bt" for selection with
two keys. When using several keys, keys using the same prefix key must be
sequential in the list and preceded by a 2-element entry explaining the prefix
key, for example

("b" "Templates for marking stuff to buy")

If you do not define a template for the C key, this key will be used to open the
customize buffer for this complex variable.

description
A short string describing the template, which will be shown during selection.

type The type of entry, a symbol. Valid values are:

entry An Org mode node, with a headline. Will be filed as the child of
the target entry or as a top-level entry. The target file should be
an Org mode file.

item A plain list item, placed in the first plain list at the target location.
Again the target file should be an Org file.

checkitem

A checkbox item. This only differs from the plain list item by the
default template.

table-line

a new line in the first table at the target location. Where exactly
the line will be inserted depends on the properties :prepend and
:table-line-pos (see below).

plain Text to be inserted as it is.

target Specification of where the captured item should be placed. In Org mode files,
targets usually define a node. Entries will become children of this node. Other
types will be added to the table or list in the body of this node. Most target
specifications contain a file name. If that file name is the empty string, it
defaults to org-default-notes-file. A file can also be given as a variable,
function, or Emacs Lisp form.

Valid values are:

(file "path/to/file")

Text will be placed at the beginning or end of that file.

(id "id of existing org entry")

Filing as child of this entry, or in the body of the entry.

(file+headline "path/to/file" "node headline")

Fast configuration if the target heading is unique in the file.

Chapter 9: Capture - Refile - Archive 85

(file+olp "path/to/file" "Level 1 heading" "Level 2" ...)

For non-unique headings, the full path is safer.

(file+regexp "path/to/file" "regexp to find location")

Use a regular expression to position the cursor.

(file+datetree "path/to/file")

Will create a heading in a date tree for today’s date.

(file+datetree+prompt "path/to/file")

Will create a heading in a date tree, but will prompt for the date.

(file+function "path/to/file" function-finding-location)

A function to find the right location in the file.

(clock) File to the entry that is currently being clocked.

(function function-finding-location)

Most general way, write your own function to find both file and
location.

template The template for creating the capture item. If you leave this empty, an ap-
propriate default template will be used. Otherwise this is a string with escape
codes, which will be replaced depending on time and context of the capture
call. The string with escapes may be loaded from a template file, using the
special syntax (file "path/to/template"). See below for more details.

properties The rest of the entry is a property list of additional options. Recognized prop-
erties are:

:prepend Normally new captured information will be appended at the target
location (last child, last table line, last list item...). Setting this
property will change that.

:immediate-finish

When set, do not offer to edit the information, just file it away im-
mediately. This makes sense if the template only needs information
that can be added automatically.

:empty-lines

Set this to the number of lines to insert before and after the new
item. Default 0, only common other value is 1.

:clock-in

Start the clock in this item.

:clock-keep

Keep the clock running when filing the captured entry.

:clock-resume

If starting the capture interrupted a clock, restart that clock when
finished with the capture. Note that :clock-keep has precedence
over :clock-resume. When setting both to t, the current clock
will run and the previous one will not be resumed.

Chapter 9: Capture - Refile - Archive 86

:unnarrowed

Do not narrow the target buffer, simply show the full buffer. De-
fault is to narrow it so that you only see the new material.

:table-line-pos

Specification of the location in the table where the new line should
be inserted. It should be a string like "II-3" meaning that the
new line should become the third line before the second horizontal
separator line.

:kill-buffer

If the target file was not yet visited when capture was invoked, kill
the buffer again after capture is completed.

9.1.3.2 Template expansion

In the template itself, special %-escapes2 allow dynamic insertion of content. The templates
are expanded in the order given here:

%[file] insert the contents of the file given by file.
%(sexp) evaluate Elisp sexp and replace with the result.
%<...> the result of format-time-string on the ... format specification.
%t timestamp, date only.
%T timestamp with date and time.
%u, %U like the above, but inactive timestamps.
%a annotation, normally the link created with org-store-link.
%i initial content, the region when capture is called while the

region is active.
The entire text will be indented like %i itself.

%A like %a, but prompt for the description part.
%c Current kill ring head.
%x Content of the X clipboard.
%k title of the currently clocked task.
%K link to the currently clocked task.
%n user name (taken from user-full-name).
%f file visited by current buffer when org-capture was called.
%F full path of the file or directory visited by current buffer.
%:keyword specific information for certain link types, see below.
%^g prompt for tags, with completion on tags in target file.
%^G prompt for tags, with completion all tags in all agenda files.
%^t like %t, but prompt for date. Similarly %^T, %^u, %^U.

You may define a prompt like %^{Birthday}t.
%^C Interactive selection of which kill or clip to use.
%^L Like %^C, but insert as link.
%^{prop}p Prompt the user for a value for property prop.
%^{prompt} prompt the user for a string and replace this sequence with it.

You may specify a default value and a completion table with
%^{prompt|default|completion2|completion3...}.
The arrow keys access a prompt-specific history.

For specific link types, the following keywords will be defined3:

Link type | Available keywords

------------------------+--

2 If you need one of these sequences literally, escape the % with a backslash.
3 If you define your own link types (see Section A.3 [Adding hyperlink types], page 204), any property you

store with org-store-link-props can be accessed in capture templates in a similar way.

Chapter 9: Capture - Refile - Archive 87

bbdb | %:name %:company

irc | %:server %:port %:nick

vm, wl, mh, mew, rmail | %:type %:subject %:message-id

| %:from %:fromname %:fromaddress

| %:to %:toname %:toaddress

| %:date (message date header field)
| %:date-timestamp (date as active timestamp)
| %:date-timestamp-inactive (date as inactive timestamp)

| %:fromto (either "to NAME" or "from NAME")4

gnus | %:group, for messages also all email fields
w3, w3m | %:url

info | %:file %:node

calendar | %:date

To place the cursor after template expansion use:

%? After completing the template, position cursor here.

9.2 Attachments

It is often useful to associate reference material with an outline node/task. Small chunks of
plain text can simply be stored in the subtree of a project. Hyperlinks (see Chapter 4 [Hy-
perlinks], page 34) can establish associations with files that live elsewhere on your computer
or in the cloud, like emails or source code files belonging to a project. Another method is
attachments, which are files located in a directory belonging to an outline node. Org uses
directories named by the unique ID of each entry. These directories are located in the ‘data’
directory which lives in the same directory where your Org file lives5. If you initialize this
directory with git init, Org will automatically commit changes when it sees them. The
attachment system has been contributed to Org by John Wiegley.

In cases where it seems better to do so, you can also attach a directory of your choice
to an entry. You can also make children inherit the attachment directory from a parent, so
that an entire subtree uses the same attached directory.

The following commands deal with attachments:

C-c C-a org-attach

The dispatcher for commands related to the attachment system. After these
keys, a list of commands is displayed and you must press an additional key to
select a command:

a org-attach-attach

Select a file and move it into the task’s attachment directory. The
file will be copied, moved, or linked, depending on org-attach-

method. Note that hard links are not supported on all systems.

c/m/l Attach a file using the copy/move/link method. Note that hard
links are not supported on all systems.

n org-attach-new

Create a new attachment as an Emacs buffer.

4 This will always be the other, not the user. See the variable org-from-is-user-regexp.
5 If you move entries or Org files from one directory to another, you may want to configure org-attach-

directory to contain an absolute path.

Chapter 9: Capture - Refile - Archive 88

z org-attach-sync

Synchronize the current task with its attachment directory, in case
you added attachments yourself.

o org-attach-open

Open current task’s attachment. If there is more than one, prompt
for a file name first. Opening will follow the rules set by org-file-

apps. For more details, see the information on following hyperlinks
(see Section 4.4 [Handling links], page 36).

O org-attach-open-in-emacs

Also open the attachment, but force opening the file in Emacs.

f org-attach-reveal

Open the current task’s attachment directory.

F org-attach-reveal-in-emacs

Also open the directory, but force using dired in Emacs.

d org-attach-delete-one

Select and delete a single attachment.

D org-attach-delete-all

Delete all of a task’s attachments. A safer way is to open the
directory in dired and delete from there.

s org-attach-set-directory

Set a specific directory as the entry’s attachment directory. This
works by putting the directory path into the ATTACH_DIR property.

i org-attach-set-inherit

Set the ATTACH_DIR_INHERIT property, so that children will use the
same directory for attachments as the parent does.

9.3 RSS feeds

Org can add and change entries based on information found in RSS feeds and Atom feeds.
You could use this to make a task out of each new podcast in a podcast feed. Or you could
use a phone-based note-creating service on the web to import tasks into Org. To access
feeds, configure the variable org-feed-alist. The docstring of this variable has detailed
information. Here is just an example:

(setq org-feed-alist

'(("Slashdot"

"http://rss.slashdot.org/Slashdot/slashdot"

"~/txt/org/feeds.org" "Slashdot Entries")))

will configure that new items from the feed provided by rss.slashdot.org will result in
new entries in the file ‘~/org/feeds.org’ under the heading ‘Slashdot Entries’, whenever
the following command is used:

C-c C-x g org-feed-update-all

C-c C-x g Collect items from the feeds configured in org-feed-alist and act upon them.

Chapter 9: Capture - Refile - Archive 89

C-c C-x G org-feed-goto-inbox

Prompt for a feed name and go to the inbox configured for this feed.

Under the same headline, Org will create a drawer ‘FEEDSTATUS’ in which it will store
information about the status of items in the feed, to avoid adding the same item several
times. You should add ‘FEEDSTATUS’ to the list of drawers in that file:

#+DRAWERS: LOGBOOK PROPERTIES FEEDSTATUS

For more information, including how to read atom feeds, see ‘org-feed.el’ and the
docstring of org-feed-alist.

9.4 Protocols for external access

You can set up Org for handling protocol calls from outside applications that are passed to
Emacs through the ‘emacsserver’. For example, you can configure bookmarks in your web
browser to send a link to the current page to Org and create a note from it using capture
(see Section 9.1 [Capture], page 82). Or you could create a bookmark that will tell Emacs
to open the local source file of a remote website you are looking at with the browser. See
http://orgmode.org/worg/org-contrib/org-protocol.php for detailed documentation
and setup instructions.

9.5 Refiling notes

When reviewing the captured data, you may want to refile some of the entries into a different
list, for example into a project. Cutting, finding the right location, and then pasting the
note is cumbersome. To simplify this process, you can use the following special command:

C-c C-w org-refile

Refile the entry or region at point. This command offers possible locations for
refiling the entry and lets you select one with completion. The item (or all
items in the region) is filed below the target heading as a subitem. Depending
on org-reverse-note-order, it will be either the first or last subitem.
By default, all level 1 headlines in the current buffer are considered to be targets,
but you can have more complex definitions across a number of files. See the
variable org-refile-targets for details. If you would like to select a location
via a file-path-like completion along the outline path, see the variables org-

refile-use-outline-path and org-outline-path-complete-in-steps. If
you would like to be able to create new nodes as new parents for refiling on the
fly, check the variable org-refile-allow-creating-parent-nodes. When the
variable org-log-refile6 is set, a timestamp or a note will be recorded when
an entry has been refiled.

C-u C-c C-w

Use the refile interface to jump to a heading.

C-u C-u C-c C-w org-refile-goto-last-stored

Jump to the location where org-refile last moved a tree to.

C-2 C-c C-w

Refile as the child of the item currently being clocked.

6 with corresponding #+STARTUP keywords logrefile, lognoterefile, and nologrefile

http://orgmode.org/worg/org-contrib/org-protocol.php

Chapter 9: Capture - Refile - Archive 90

C-0 C-c C-w or C-u C-u C-u C-c C-w org-refile-cache-clear

Clear the target cache. Caching of refile targets can be turned on by setting
org-refile-use-cache. To make the command see new possible targets, you
have to clear the cache with this command.

9.6 Archiving

When a project represented by a (sub)tree is finished, you may want to move the tree out
of the way and to stop it from contributing to the agenda. Archiving is important to keep
your working files compact and global searches like the construction of agenda views fast.

C-c C-x C-a org-archive-subtree-default

Archive the current entry using the command specified in the variable org-

archive-default-command.

9.6.1 Moving a tree to the archive file

The most common archiving action is to move a project tree to another file, the archive file.

C-c C-x C-s or short C-c $ org-archive-subtree

Archive the subtree starting at the cursor position to the location given by
org-archive-location.

C-u C-c C-x C-s

Check if any direct children of the current headline could be moved to the
archive. To do this, each subtree is checked for open TODO entries. If none
are found, the command offers to move it to the archive location. If the cursor
is not on a headline when this command is invoked, the level 1 trees will be
checked.

The default archive location is a file in the same directory as the current file, with
the name derived by appending ‘_archive’ to the current file name. For information and
examples on how to change this, see the documentation string of the variable org-archive-
location. There is also an in-buffer option for setting this variable, for example7:

#+ARCHIVE: %s_done::

If you would like to have a special ARCHIVE location for a single entry or a (sub)tree, give
the entry an :ARCHIVE: property with the location as the value (see Chapter 7 [Properties
and Columns], page 58).

When a subtree is moved, it receives a number of special properties that record context
information like the file from where the entry came, its outline path the archiving time
etc. Configure the variable org-archive-save-context-info to adjust the amount of
information added.

9.6.2 Internal archiving

If you want to just switch off (for agenda views) certain subtrees without moving them to
a different file, you can use the ARCHIVE tag.

7 For backward compatibility, the following also works: If there are several such lines in a file, each specifies
the archive location for the text below it. The first such line also applies to any text before its definition.
However, using this method is strongly deprecated as it is incompatible with the outline structure of the
document. The correct method for setting multiple archive locations in a buffer is using properties.

Chapter 9: Capture - Refile - Archive 91

A headline that is marked with the ARCHIVE tag (see Chapter 6 [Tags], page 54) stays
at its location in the outline tree, but behaves in the following way:

− It does not open when you attempt to do so with a visibility cycling command (see
Section 2.3 [Visibility cycling], page 6). You can force cycling archived subtrees with C-

TAB, or by setting the option org-cycle-open-archived-trees. Also normal outline
commands like show-all will open archived subtrees.

− During sparse tree construction (see Section 2.6 [Sparse trees], page 11), matches in
archived subtrees are not exposed, unless you configure the option org-sparse-tree-

open-archived-trees.

− During agenda view construction (see Chapter 10 [Agenda Views], page 92), the con-
tent of archived trees is ignored unless you configure the option org-agenda-skip-

archived-trees, in which case these trees will always be included. In the agenda you
can press v a to get archives temporarily included.

− Archived trees are not exported (see Chapter 12 [Exporting], page 126), only the head-
line is. Configure the details using the variable org-export-with-archived-trees.

− Archived trees are excluded from column view unless the variable org-columns-skip-
archived-trees is configured to nil.

The following commands help manage the ARCHIVE tag:

C-c C-x a org-toggle-archive-tag

Toggle the ARCHIVE tag for the current headline. When the tag is set, the
headline changes to a shadowed face, and the subtree below it is hidden.

C-u C-c C-x a

Check if any direct children of the current headline should be archived. To do
this, each subtree is checked for open TODO entries. If none are found, the
command offers to set the ARCHIVE tag for the child. If the cursor is not on
a headline when this command is invoked, the level 1 trees will be checked.

C-TAB org-force-cycle-archived

Cycle a tree even if it is tagged with ARCHIVE.

C-c C-x A org-archive-to-archive-sibling

Move the current entry to the Archive Sibling. This is a sibling of the entry
with the heading ‘Archive’ and the tag ‘ARCHIVE’. The entry becomes a child
of that sibling and in this way retains a lot of its original context, including
inherited tags and approximate position in the outline.

Chapter 10: Agenda views 92

10 Agenda views

Due to the way Org works, TODO items, time-stamped items, and tagged headlines can be
scattered throughout a file or even a number of files. To get an overview of open action items,
or of events that are important for a particular date, this information must be collected,
sorted and displayed in an organized way.

Org can select items based on various criteria and display them in a separate buffer.
Seven different view types are provided:

• an agenda that is like a calendar and shows information for specific dates,

• a TODO list that covers all unfinished action items,

• a match view, showings headlines based on the tags, properties, and TODO state
associated with them,

• a timeline view that shows all events in a single Org file, in time-sorted view,

• a text search view that shows all entries from multiple files that contain specified key-
words,

• a stuck projects view showing projects that currently don’t move along, and

• custom views that are special searches and combinations of different views.

The extracted information is displayed in a special agenda buffer. This buffer is read-only,
but provides commands to visit the corresponding locations in the original Org files, and
even to edit these files remotely.

Two variables control how the agenda buffer is displayed and whether the window con-
figuration is restored when the agenda exits: org-agenda-window-setup and org-agenda-

restore-windows-after-quit.

10.1 Agenda files

The information to be shown is normally collected from all agenda files, the files listed in the
variable org-agenda-files1. If a directory is part of this list, all files with the extension
‘.org’ in this directory will be part of the list.

Thus, even if you only work with a single Org file, that file should be put into the list2.
You can customize org-agenda-files, but the easiest way to maintain it is through the
following commands

C-c [org-agenda-file-to-front

Add current file to the list of agenda files. The file is added to the front of
the list. If it was already in the list, it is moved to the front. With a prefix
argument, file is added/moved to the end.

C-c] org-remove-file

Remove current file from the list of agenda files.

1 If the value of that variable is not a list, but a single file name, then the list of agenda files will be
maintained in that external file.

2 When using the dispatcher, pressing < before selecting a command will actually limit the command to
the current file, and ignore org-agenda-files until the next dispatcher command.

Chapter 10: Agenda views 93

C-’ org-cycle-agenda-files

C-, Cycle through agenda file list, visiting one file after the other.

M-x org-iswitchb

Command to use an iswitchb-like interface to switch to and between Org
buffers.

The Org menu contains the current list of files and can be used to visit any of them.

If you would like to focus the agenda temporarily on a file not in this list, or on just one
file in the list, or even on only a subtree in a file, then this can be done in different ways.
For a single agenda command, you may press < once or several times in the dispatcher (see
Section 10.2 [Agenda dispatcher], page 93). To restrict the agenda scope for an extended
period, use the following commands:

C-c C-x < org-agenda-set-restriction-lock

Permanently restrict the agenda to the current subtree. When with a prefix
argument, or with the cursor before the first headline in a file, the agenda scope
is set to the entire file. This restriction remains in effect until removed with C-c

C-x >, or by typing either < or > in the agenda dispatcher. If there is a window
displaying an agenda view, the new restriction takes effect immediately.

C-c C-x > org-agenda-remove-restriction-lock

Remove the permanent restriction created by C-c C-x <.

When working with ‘speedbar.el’, you can use the following commands in the Speedbar
frame:

< in the speedbar frame org-speedbar-set-agenda-restriction

Permanently restrict the agenda to the item—either an Org file or a subtree in
such a file—at the cursor in the Speedbar frame. If there is a window displaying
an agenda view, the new restriction takes effect immediately.

> in the speedbar frame org-agenda-remove-restriction-lock

Lift the restriction.

10.2 The agenda dispatcher

The views are created through a dispatcher, which should be bound to a global key—
for example C-c a (see Section 1.3 [Activation], page 3). In the following we will assume
that C-c a is indeed how the dispatcher is accessed and list keyboard access to commands
accordingly. After pressing C-c a, an additional letter is required to execute a command.
The dispatcher offers the following default commands:

a Create the calendar-like agenda (see Section 10.3.1 [Weekly/daily agenda],
page 94).

t / T Create a list of all TODO items (see Section 10.3.2 [Global TODO list], page 96).

m / M Create a list of headlines matching a TAGS expression (see Section 10.3.3
[Matching tags and properties], page 97).

L Create the timeline view for the current buffer (see Section 10.3.4 [Timeline],
page 99).

Chapter 10: Agenda views 94

s Create a list of entries selected by a boolean expression of keywords and/or
regular expressions that must or must not occur in the entry.

/ Search for a regular expression in all agenda files and additionally in the files
listed in org-agenda-text-search-extra-files. This uses the Emacs com-
mand multi-occur. A prefix argument can be used to specify the number of
context lines for each match, default is 1.

/ ! Create a list of stuck projects (see Section 10.3.6 [Stuck projects], page 100).

< Restrict an agenda command to the current buffer3. After pressing <, you still
need to press the character selecting the command.

< < If there is an active region, restrict the following agenda command to the region.
Otherwise, restrict it to the current subtree4. After pressing < <, you still need
to press the character selecting the command.

You can also define custom commands that will be accessible through the dispatcher, just
like the default commands. This includes the possibility to create extended agenda buffers
that contain several blocks together, for example the weekly agenda, the global TODO list
and a number of special tags matches. See Section 10.6 [Custom agenda views], page 111.

10.3 The built-in agenda views

In this section we describe the built-in views.

10.3.1 The weekly/daily agenda

The purpose of the weekly/daily agenda is to act like a page of a paper agenda, showing
all the tasks for the current week or day.

C-c a a org-agenda-list

Compile an agenda for the current week from a list of Org files. The agenda
shows the entries for each day. With a numeric prefix5 (like C-u 2 1 C-c a a)
you may set the number of days to be displayed.

The default number of days displayed in the agenda is set by the variable org-agenda-
span (or the obsolete org-agenda-ndays). This variable can be set to any number of days
you want to see by default in the agenda, or to a span name, such a day, week, month or
year.

Remote editing from the agenda buffer means, for example, that you can change the
dates of deadlines and appointments from the agenda buffer. The commands available in
the Agenda buffer are listed in Section 10.5 [Agenda commands], page 102.

3 For backward compatibility, you can also press 1 to restrict to the current buffer.
4 For backward compatibility, you can also press 0 to restrict to the current region/subtree.
5 For backward compatibility, the universal prefix C-u causes all TODO entries to be listed before the

agenda. This feature is deprecated, use the dedicated TODO list, or a block agenda instead (see
Section 10.6.2 [Block agenda], page 112).

Chapter 10: Agenda views 95

Calendar/Diary integration

Emacs contains the calendar and diary by Edward M. Reingold. The calendar displays
a three-month calendar with holidays from different countries and cultures. The diary
allows you to keep track of anniversaries, lunar phases, sunrise/set, recurrent appointments
(weekly, monthly) and more. In this way, it is quite complementary to Org. It can be very
useful to combine output from Org with the diary.

In order to include entries from the Emacs diary into Org mode’s agenda, you only need
to customize the variable

(setq org-agenda-include-diary t)

After that, everything will happen automatically. All diary entries including holidays,
anniversaries, etc., will be included in the agenda buffer created by Org mode. SPC, TAB,
and RET can be used from the agenda buffer to jump to the diary file in order to edit
existing diary entries. The i command to insert new entries for the current date works in
the agenda buffer, as well as the commands S, M, and C to display Sunrise/Sunset times,
show lunar phases and to convert to other calendars, respectively. c can be used to switch
back and forth between calendar and agenda.

If you are using the diary only for sexp entries and holidays, it is faster to not use the
above setting, but instead to copy or even move the entries into an Org file. Org mode
evaluates diary-style sexp entries, and does it faster because there is no overhead for first
creating the diary display. Note that the sexp entries must start at the left margin, no
whitespace is allowed before them. For example, the following segment of an Org file will
be processed and entries will be made in the agenda:

* Birthdays and similar stuff

#+CATEGORY: Holiday

%%(org-calendar-holiday) ; special function for holiday names

#+CATEGORY: Ann

%%(org-anniversary 1956 5 14)6 Arthur Dent is %d years old

%%(org-anniversary 1869 10 2) Mahatma Gandhi would be %d years old

Anniversaries from BBDB

If you are using the Big Brothers Database to store your contacts, you will very likely prefer
to store anniversaries in BBDB rather than in a separate Org or diary file. Org supports
this and will show BBDB anniversaries as part of the agenda. All you need to do is to add
the following to one of your agenda files:

* Anniversaries

:PROPERTIES:

:CATEGORY: Anniv

:END:

%%(org-bbdb-anniversaries)

You can then go ahead and define anniversaries for a BBDB record. Basically, you need
to press C-o anniversary RET with the cursor in a BBDB record and then add the date
in the format YYYY-MM-DD or MM-DD, followed by a space and the class of the anniversary

6 org-anniversary is just like diary-anniversary, but the argument order is always according to ISO and there-
fore independent of the value of calendar-date-style.

Chapter 10: Agenda views 96

(‘birthday’ or ‘wedding’, or a format string). If you omit the class, it will default to
‘birthday’. Here are a few examples, the header for the file ‘org-bbdb.el’ contains more
detailed information.

1973-06-22

06-22

1955-08-02 wedding

2008-04-14 %s released version 6.01 of org mode, %d years ago

After a change to BBDB, or for the first agenda display during an Emacs session,
the agenda display will suffer a short delay as Org updates its hash with anniversaries.
However, from then on things will be very fast—much faster in fact than a long list of
‘%%(diary-anniversary)’ entries in an Org or Diary file.

Appointment reminders

Org can interact with Emacs appointments notification facility. To add all the appointments
of your agenda files, use the command org-agenda-to-appt. This command also lets you
filter through the list of your appointments and add only those belonging to a specific
category or matching a regular expression. See the docstring for details.

10.3.2 The global TODO list

The global TODO list contains all unfinished TODO items formatted and collected into a
single place.

C-c a t org-todo-list

Show the global TODO list. This collects the TODO items from all agenda files
(see Chapter 10 [Agenda Views], page 92) into a single buffer. By default, this
lists items with a state the is not a DONE state. The buffer is in agenda-mode,
so there are commands to examine and manipulate the TODO entries directly
from that buffer (see Section 10.5 [Agenda commands], page 102).

C-c a T org-todo-list

Like the above, but allows selection of a specific TODO keyword. You can
also do this by specifying a prefix argument to C-c a t. You are prompted for a
keyword, and you may also specify several keywords by separating them with ‘|’
as the boolean OR operator. With a numeric prefix, the Nth keyword in org-

todo-keywords is selected. The r key in the agenda buffer regenerates it, and
you can give a prefix argument to this command to change the selected TODO
keyword, for example 3 r. If you often need a search for a specific keyword,
define a custom command for it (see Section 10.2 [Agenda dispatcher], page 93).
Matching specific TODO keywords can also be done as part of a tags search
(see Section 6.3 [Tag searches], page 56).

Remote editing of TODO items means that you can change the state of a TODO en-
try with a single key press. The commands available in the TODO list are described in
Section 10.5 [Agenda commands], page 102.

Normally the global TODO list simply shows all headlines with TODO keywords. This
list can become very long. There are two ways to keep it more compact:

− Some people view a TODO item that has been scheduled for execution or have a
deadline (see Section 8.1 [Timestamps], page 67) as no longer open. Configure the vari-

Chapter 10: Agenda views 97

ables org-agenda-todo-ignore-scheduled, org-agenda-todo-ignore-deadlines,
org-agenda-todo-ignore-timestamp and/or org-agenda-todo-ignore-with-date

to exclude such items from the global TODO list.

− TODO items may have sublevels to break up the task into subtasks. In such cases it
may be enough to list only the highest level TODO headline and omit the sublevels
from the global list. Configure the variable org-agenda-todo-list-sublevels to get
this behavior.

10.3.3 Matching tags and properties

If headlines in the agenda files are marked with tags (see Chapter 6 [Tags], page 54), or
have properties (see Chapter 7 [Properties and Columns], page 58), you can select headlines
based on this metadata and collect them into an agenda buffer. The match syntax described
here also applies when creating sparse trees with C-c / m.

C-c a m org-tags-view

Produce a list of all headlines that match a given set of tags. The com-
mand prompts for a selection criterion, which is a boolean logic expression
with tags, like ‘+work+urgent-withboss’ or ‘work|home’ (see Chapter 6 [Tags],
page 54). If you often need a specific search, define a custom command for it
(see Section 10.2 [Agenda dispatcher], page 93).

C-c a M org-tags-view

Like C-c a m, but only select headlines that are also TODO items in a
not-DONE state and force checking subitems (see variable org-tags-match-

list-sublevels). To exclude scheduled/deadline items, see the variable
org-agenda-tags-todo-honor-ignore-options. Matching specific TODO
keywords together with a tags match is also possible, see Section 6.3 [Tag
searches], page 56.

The commands available in the tags list are described in Section 10.5 [Agenda com-
mands], page 102.

Match syntax

A search string can use Boolean operators ‘&’ for AND and ‘|’ for OR. ‘&’ binds more strongly
than ‘|’. Parentheses are currently not implemented. Each element in the search is either
a tag, a regular expression matching tags, or an expression like PROPERTY OPERATOR VALUE

with a comparison operator, accessing a property value. Each element may be preceded by
‘-’, to select against it, and ‘+’ is syntactic sugar for positive selection. The AND operator
‘&’ is optional when ‘+’ or ‘-’ is present. Here are some examples, using only tags.

‘+work-boss’
Select headlines tagged ‘:work:’, but discard those also tagged ‘:boss:’.

‘work|laptop’
Selects lines tagged ‘:work:’ or ‘:laptop:’.

‘work|laptop+night’
Like before, but require the ‘:laptop:’ lines to be tagged also ‘:night:’.

Chapter 10: Agenda views 98

Instead of a tag, you may also specify a regular expression enclosed in curly braces. For
example, ‘work+{^boss.*}’ matches headlines that contain the tag ‘:work:’ and any tag
starting with ‘boss’.

You may also test for properties (see Chapter 7 [Properties and Columns], page 58) at
the same time as matching tags. The properties may be real properties, or special properties
that represent other metadata (see Section 7.2 [Special properties], page 60). For example,
the “property” TODO represents the TODO keyword of the entry. Or, the “property” LEVEL

represents the level of an entry. So a search ‘+LEVEL=3+boss-TODO="DONE"’ lists all level
three headlines that have the tag ‘boss’ and are not marked with the TODO keyword
DONE. In buffers with org-odd-levels-only set, ‘LEVEL’ does not count the number of
stars, but ‘LEVEL=2’ will correspond to 3 stars etc.

Here are more examples:

‘work+TODO="WAITING"’
Select ‘:work:’-tagged TODO lines with the specific TODO keyword ‘WAITING’.

‘work+TODO="WAITING"|home+TODO="WAITING"’
Waiting tasks both at work and at home.

When matching properties, a number of different operators can be used to test the value
of a property. Here is a complex example:

+work-boss+PRIORITY="A"+Coffee="unlimited"+Effort<2 \

+With={Sarah\|Denny}+SCHEDULED>="<2008-10-11>"

The type of comparison will depend on how the comparison value is written:

− If the comparison value is a plain number, a numerical comparison is done, and the
allowed operators are ‘<’, ‘=’, ‘>’, ‘<=’, ‘>=’, and ‘<>’.

− If the comparison value is enclosed in double-quotes, a string comparison is done, and
the same operators are allowed.

− If the comparison value is enclosed in double-quotes and angular brackets (like
‘DEADLINE<="<2008-12-24 18:30>"’), both values are assumed to be date/time
specifications in the standard Org way, and the comparison will be done accordingly.
Special values that will be recognized are "<now>" for now (including time), and
"<today>", and "<tomorrow>" for these days at 0:00 hours, i.e. without a time
specification. Also strings like "<+5d>" or "<-2m>" with units d, w, m, and y for day,
week, month, and year, respectively, can be used.

− If the comparison value is enclosed in curly braces, a regexp match is performed, with
‘=’ meaning that the regexp matches the property value, and ‘<>’ meaning that it does
not match.

So the search string in the example finds entries tagged ‘:work:’ but not ‘:boss:’, which
also have a priority value ‘A’, a ‘:Coffee:’ property with the value ‘unlimited’, an ‘Effort’
property that is numerically smaller than 2, a ‘:With:’ property that is matched by the
regular expression ‘Sarah\|Denny’, and that are scheduled on or after October 11, 2008.

Accessing TODO, LEVEL, and CATEGORY during a search is fast. Accessing any other
properties will slow down the search. However, once you have paid the price by accessing
one property, testing additional properties is cheap again.

Chapter 10: Agenda views 99

You can configure Org mode to use property inheritance during a search, but beware that
this can slow down searches considerably. See Section 7.4 [Property inheritance], page 61,
for details.

For backward compatibility, and also for typing speed, there is also a different way to test
TODO states in a search. For this, terminate the tags/property part of the search string
(which may include several terms connected with ‘|’) with a ‘/’ and then specify a Boolean
expression just for TODO keywords. The syntax is then similar to that for tags, but should
be applied with care: for example, a positive selection on several TODO keywords cannot
meaningfully be combined with boolean AND. However, negative selection combined with
AND can be meaningful. To make sure that only lines are checked that actually have any
TODO keyword (resulting in a speed-up), use C-c a M, or equivalently start the TODO part
after the slash with ‘!’. Using C-c a M or ‘/!’ will not match TODO keywords in a DONE
state. Examples:

‘work/WAITING’
Same as ‘work+TODO="WAITING"’

‘work/!-WAITING-NEXT’
Select ‘:work:’-tagged TODO lines that are neither ‘WAITING’ nor ‘NEXT’

‘work/!+WAITING|+NEXT’
Select ‘:work:’-tagged TODO lines that are either ‘WAITING’ or ‘NEXT’.

10.3.4 Timeline for a single file

The timeline summarizes all time-stamped items from a single Org mode file in a time-sorted
view. The main purpose of this command is to give an overview over events in a project.

C-c a L org-timeline

Show a time-sorted view of the Org file, with all time-stamped items. When
called with a C-u prefix, all unfinished TODO entries (scheduled or not) are
also listed under the current date.

The commands available in the timeline buffer are listed in Section 10.5 [Agenda commands],
page 102.

10.3.5 Search view

This agenda view is a general text search facility for Org mode entries. It is particularly
useful to find notes.

C-c a s org-search-view

This is a special search that lets you select entries by matching a substring or
specific words using a boolean logic.

For example, the search string ‘computer equipment’ will find entries that contain
‘computer equipment’ as a substring. If the two words are separated by more space or
a line break, the search will still match. Search view can also search for specific key-
words in the entry, using Boolean logic. The search string ‘+computer +wifi -ethernet

-{8\.11[bg]}’ will search for note entries that contain the keywords computer and wifi,
but not the keyword ethernet, and which are also not matched by the regular expression
8\.11[bg], meaning to exclude both 8.11b and 8.11g. The first ‘+’ is necessary to turn on

Chapter 10: Agenda views 100

word search, other ‘+’ characters are optional. For more details, see the docstring of the
command org-search-view.

Note that in addition to the agenda files, this command will also search the files listed
in org-agenda-text-search-extra-files.

10.3.6 Stuck projects

If you are following a system like David Allen’s GTD to organize your work, one of the
“duties” you have is a regular review to make sure that all projects move along. A stuck
project is a project that has no defined next actions, so it will never show up in the TODO
lists Org mode produces. During the review, you need to identify such projects and define
next actions for them.

C-c a # org-agenda-list-stuck-projects

List projects that are stuck.

C-c a ! Customize the variable org-stuck-projects to define what a stuck project is
and how to find it.

You almost certainly will have to configure this view before it will work for you. The
built-in default assumes that all your projects are level-2 headlines, and that a project is
not stuck if it has at least one entry marked with a TODO keyword TODO or NEXT or
NEXTACTION.

Let’s assume that you, in your own way of using Org mode, identify projects with a tag
PROJECT, and that you use a TODO keyword MAYBE to indicate a project that should
not be considered yet. Let’s further assume that the TODO keyword DONE marks finished
projects, and that NEXT and TODO indicate next actions. The tag @SHOP indicates
shopping and is a next action even without the NEXT tag. Finally, if the project contains
the special word IGNORE anywhere, it should not be listed either. In this case you would
start by identifying eligible projects with a tags/todo match7 ‘+PROJECT/-MAYBE-DONE’, and
then check for TODO, NEXT, @SHOP, and IGNORE in the subtree to identify projects
that are not stuck. The correct customization for this is

(setq org-stuck-projects

'("+PROJECT/-MAYBE-DONE" ("NEXT" "TODO") ("@SHOP")

"\\<IGNORE\\>"))

Note that if a project is identified as non-stuck, the subtree of this entry will still be
searched for stuck projects.

10.4 Presentation and sorting

Before displaying items in an agenda view, Org mode visually prepares the items and
sorts them. Each item occupies a single line. The line starts with a prefix that contains
the category (see Section 10.4.1 [Categories], page 101) of the item and other important
information. You can customize in which column tags will be displayed through org-

agenda-tags-column. You can also customize the prefix using the option org-agenda-

prefix-format. This prefix is followed by a cleaned-up version of the outline headline
associated with the item.

7 See Section 6.3 [Tag searches], page 56.

Chapter 10: Agenda views 101

10.4.1 Categories

The category is a broad label assigned to each agenda item. By default, the category is
simply derived from the file name, but you can also specify it with a special line in the
buffer, like this8:

#+CATEGORY: Thesis

If you would like to have a special CATEGORY for a single entry or a (sub)tree, give the
entry a :CATEGORY: property with the special category you want to apply as the value.

The display in the agenda buffer looks best if the category is not longer than 10 characters.

You can set up icons for category by customizing the org-agenda-category-icon-alist

variable.

10.4.2 Time-of-day specifications

Org mode checks each agenda item for a time-of-day specification. The time can be
part of the timestamp that triggered inclusion into the agenda, for example as in
‘<2005-05-10 Tue 19:00>’. Time ranges can be specified with two timestamps, like
‘<2005-05-10 Tue 20:30>--<2005-05-10 Tue 22:15>’.

In the headline of the entry itself, a time(range) may also appear as plain text (like
‘12:45’ or a ‘8:30-1pm’). If the agenda integrates the Emacs diary (see Section 10.3.1
[Weekly/daily agenda], page 94), time specifications in diary entries are recognized as well.

For agenda display, Org mode extracts the time and displays it in a standard 24 hour
format as part of the prefix. The example times in the previous paragraphs would end up
in the agenda like this:

8:30-13:00 Arthur Dent lies in front of the bulldozer

12:45...... Ford Prefect arrives and takes Arthur to the pub

19:00...... The Vogon reads his poem

20:30-22:15 Marvin escorts the Hitchhikers to the bridge

If the agenda is in single-day mode, or for the display of today, the timed entries are
embedded in a time grid, like

8:00...... ------------------

8:30-13:00 Arthur Dent lies in front of the bulldozer

10:00...... ------------------

12:00...... ------------------

12:45...... Ford Prefect arrives and takes Arthur to the pub

14:00...... ------------------

16:00...... ------------------

18:00...... ------------------

19:00...... The Vogon reads his poem

20:00...... ------------------

20:30-22:15 Marvin escorts the Hitchhikers to the bridge

The time grid can be turned on and off with the variable org-agenda-use-time-grid,
and can be configured with org-agenda-time-grid.

8 For backward compatibility, the following also works: if there are several such lines in a file, each specifies
the category for the text below it. The first category also applies to any text before the first CATEGORY
line. However, using this method is strongly deprecated as it is incompatible with the outline structure
of the document. The correct method for setting multiple categories in a buffer is using a property.

Chapter 10: Agenda views 102

10.4.3 Sorting of agenda items

Before being inserted into a view, the items are sorted. How this is done depends on the
type of view.

• For the daily/weekly agenda, the items for each day are sorted. The default order is
to first collect all items containing an explicit time-of-day specification. These entries
will be shown at the beginning of the list, as a schedule for the day. After that, items
remain grouped in categories, in the sequence given by org-agenda-files. Within
each category, items are sorted by priority (see Section 5.4 [Priorities], page 50), which
is composed of the base priority (2000 for priority ‘A’, 1000 for ‘B’, and 0 for ‘C’), plus
additional increments for overdue scheduled or deadline items.

• For the TODO list, items remain in the order of categories, but within each category,
sorting takes place according to priority (see Section 5.4 [Priorities], page 50). The
priority used for sorting derives from the priority cookie, with additions depending on
how close an item is to its due or scheduled date.

• For tags matches, items are not sorted at all, but just appear in the sequence in which
they are found in the agenda files.

Sorting can be customized using the variable org-agenda-sorting-strategy, and may
also include criteria based on the estimated effort of an entry (see Section 8.5 [Effort esti-
mates], page 79).

10.5 Commands in the agenda buffer

Entries in the agenda buffer are linked back to the Org file or diary file where they originate.
You are not allowed to edit the agenda buffer itself, but commands are provided to show and
jump to the original entry location, and to edit the Org files “remotely” from the agenda
buffer. In this way, all information is stored only once, removing the risk that your agenda
and note files may diverge.

Some commands can be executed with mouse clicks on agenda lines. For the other
commands, the cursor needs to be in the desired line.

Motion

n org-agenda-next-line

Next line (same as DOWN and C-n).

p org-agenda-previous-line

Previous line (same as UP and C-p).

View/Go to Org file
SPC or mouse-3 org-agenda-show-and-scroll-up

Display the original location of the item in another window. With prefix arg,
make sure that the entire entry is made visible in the outline, not only the
heading.

L org-agenda-recenter

Display original location and recenter that window.

TAB or mouse-2 org-agenda-goto

Go to the original location of the item in another window.

Chapter 10: Agenda views 103

RET org-agenda-switch-to

Go to the original location of the item and delete other windows.

F org-agenda-follow-mode

Toggle Follow mode. In Follow mode, as you move the cursor through the
agenda buffer, the other window always shows the corresponding location in
the Org file. The initial setting for this mode in new agenda buffers can be set
with the variable org-agenda-start-with-follow-mode.

C-c C-x b org-agenda-tree-to-indirect-buffer

Display the entire subtree of the current item in an indirect buffer. With a
numeric prefix argument N, go up to level N and then take that tree. If N
is negative, go up that many levels. With a C-u prefix, do not remove the
previously used indirect buffer.

C-c C-o org-agenda-open-link

Follow a link in the entry. This will offer a selection of any links in the text
belonging to the referenced Org node. If there is only one link, it will be followed
without a selection prompt.

Change display
A Interactively select another agenda view and append it to the current view.

o Delete other windows.

v d or short d org-agenda-day-view
v w or short w org-agenda-week-view
v m org-agenda-month-view
v y org-agenda-year-view
v SPC org-agenda-reset-view

Switch to day/week/month/year view. When switching to day or week view,
this setting becomes the default for subsequent agenda refreshes. Since month
and year views are slow to create, they do not become the default. A numeric
prefix argument may be used to jump directly to a specific day of the year, ISO
week, month, or year, respectively. For example, 32 d jumps to February 1st, 9
w to ISO week number 9. When setting day, week, or month view, a year may
be encoded in the prefix argument as well. For example, 200712 w will jump
to week 12 in 2007. If such a year specification has only one or two digits, it
will be mapped to the interval 1938-2037. v SPC will reset to what is set in
org-agenda-span.

f org-agenda-later

Go forward in time to display the following org-agenda-current-span days.
For example, if the display covers a week, switch to the following week. With
prefix arg, go forward that many times org-agenda-current-span days.

b org-agenda-earlier

Go backward in time to display earlier dates.

. org-agenda-goto-today

Go to today.

j org-agenda-goto-date

Prompt for a date and go there.

Chapter 10: Agenda views 104

J org-agenda-clock-goto

Go to the currently clocked-in task in the agenda buffer.

D org-agenda-toggle-diary

Toggle the inclusion of diary entries. See Section 10.3.1 [Weekly/daily agenda],
page 94.

v l or short l org-agenda-log-mode

Toggle Logbook mode. In Logbook mode, entries that were marked DONE
while logging was on (variable org-log-done) are shown in the agenda, as
are entries that have been clocked on that day. You can configure the entry
types that should be included in log mode using the variable org-agenda-log-
mode-items. When called with a C-u prefix, show all possible logbook entries,
including state changes. When called with two prefix args C-u C-u, show only
logging information, nothing else. v L is equivalent to C-u v l.

v [or short [org-agenda-manipulate-query-add

Include inactive timestamps into the current view. Only for weekly/daily
agenda and timeline views.

v a org-agenda-archives-mode
v A org-agenda-archives-mode ’files

Toggle Archives mode. In Archives mode, trees that are marked ARCHIVED are
also scanned when producing the agenda. When you use the capital A, even all
archive files are included. To exit archives mode, press v a again.

v R or short R org-agenda-clockreport-mode

Toggle Clockreport mode. In Clockreport mode, the daily/weekly agenda will
always show a table with the clocked times for the timespan and file scope cov-
ered by the current agenda view. The initial setting for this mode in new agenda
buffers can be set with the variable org-agenda-start-with-clockreport-

mode. By using a prefix argument when toggling this mode (i.e. C-u R), the
clock table will not show contributions from entries that are hidden by agenda
filtering9. See also the variable org-clock-report-include-clocking-task.

v c Show overlapping clock entries, clocking gaps, and other clocking problems in
the current agenda range. You can then visit clocking lines and fix them manu-
ally. See the variable org-agenda-clock-consistency-checks for information
on how to customize the definition of what constituted a clocking problem. To
return to normal agenda display, press l to exit Logbook mode.

v E or short E org-agenda-entry-text-mode

Toggle entry text mode. In entry text mode, a number of lines from the Org
outline node referenced by an agenda line will be displayed below the line.
The maximum number of lines is given by the variable org-agenda-entry-

text-maxlines. Calling this command with a numeric prefix argument will
temporarily modify that number to the prefix value.

G org-agenda-toggle-time-grid

Toggle the time grid on and off. See also the variables org-agenda-use-time-
grid and org-agenda-time-grid.

9 Only tags filtering will be respected here, effort filtering is ignored.

Chapter 10: Agenda views 105

r org-agenda-redo

Recreate the agenda buffer, for example to reflect the changes after modification
of the timestamps of items with S-LEFT and S-RIGHT. When the buffer is the
global TODO list, a prefix argument is interpreted to create a selective list for
a specific TODO keyword.

g org-agenda-redo

Same as r.

C-x C-s or short s org-save-all-org-buffers

Save all Org buffers in the current Emacs session, and also the locations of IDs.

C-c C-x C-c org-agenda-columns

Invoke column view (see Section 7.5 [Column view], page 61) in the agenda
buffer. The column view format is taken from the entry at point, or (if there
is no entry at point), from the first entry in the agenda view. So whatever the
format for that entry would be in the original buffer (taken from a property,
from a #+COLUMNS line, or from the default variable org-columns-default-

format), will be used in the agenda.

C-c C-x > org-agenda-remove-restriction-lock

Remove the restriction lock on the agenda, if it is currently restricted to a file
or subtree (see Section 10.1 [Agenda files], page 92).

Secondary filtering and query editing
< org-agenda-filter-by-category

Filter the current agenda view with respect to the category of the item at
point. Pressing < another time will remove this filter. You can add a filter
preset through the option org-agenda-category-filter-preset (see below.)

/ org-agenda-filter-by-tag

Filter the current agenda view with respect to a tag and/or effort estimates.
The difference between this and a custom agenda command is that filtering is
very fast, so that you can switch quickly between different filters without having
to recreate the agenda.10

You will be prompted for a tag selection letter; SPC will mean any tag at all.
Pressing TAB at that prompt will offer use completion to select a tag (including
any tags that do not have a selection character). The command then hides all
entries that do not contain or inherit this tag. When called with prefix arg,
remove the entries that do have the tag. A second / at the prompt will turn
off the filter and unhide any hidden entries. If the first key you press is either +
or -, the previous filter will be narrowed by requiring or forbidding the selected
additional tag. Instead of pressing + or - after /, you can also immediately use
the \ command.

10 Custom commands can preset a filter by binding the variable org-agenda-tag-filter-preset as an
option. This filter will then be applied to the view and persist as a basic filter through refreshes and
more secondary filtering. The filter is a global property of the entire agenda view—in a block agenda,
you should only set this in the global options section, not in the section of an individual block.

Chapter 10: Agenda views 106

In order to filter for effort estimates, you should set up allowed efforts globally,
for example

(setq org-global-properties

'(("Effort_ALL". "0 0:10 0:30 1:00 2:00 3:00 4:00")))

You can then filter for an effort by first typing an operator, one of <, >, and
=, and then the one-digit index of an effort estimate in your array of allowed
values, where 0 means the 10th value. The filter will then restrict to entries
with effort smaller-or-equal, equal, or larger-or-equal than the selected value. If
the digits 0-9 are not used as fast access keys to tags, you can also simply press
the index digit directly without an operator. In this case, < will be assumed.
For application of the operator, entries without a defined effort will be treated
according to the value of org-sort-agenda-noeffort-is-high. To filter for
tasks without effort definition, press ? as the operator.

Org also supports automatic, context-aware tag filtering. If the variable org-

agenda-auto-exclude-function is set to a user-defined function, that function
can decide which tags should be excluded from the agenda automatically. Once
this is set, the / command then accepts RET as a sub-option key and runs the
auto exclusion logic. For example, let’s say you use a Net tag to identify tasks
which need network access, an Errand tag for errands in town, and a Call

tag for making phone calls. You could auto-exclude these tags based on the
availability of the Internet, and outside of business hours, with something like
this:

(defun org-my-auto-exclude-function (tag)

(and (cond

((string= tag "Net")

(/= 0 (call-process "/sbin/ping" nil nil nil

"-c1" "-q" "-t1" "mail.gnu.org")))

((or (string= tag "Errand") (string= tag "Call"))

(let ((hour (nth 2 (decode-time))))

(or (< hour 8) (> hour 21)))))

(concat "-" tag)))

(setq org-agenda-auto-exclude-function 'org-my-auto-exclude-function)

\\ org-agenda-filter-by-tag-refine

Narrow the current agenda filter by an additional condition. When called with
prefix arg, remove the entries that do have the tag, or that do match the effort
criterion. You can achieve the same effect by pressing + or - as the first key
after the / command.

[] { }

in search view
add new search words ([and]) or new regular expressions ({ and })
to the query string. The opening bracket/brace will add a positive
search term prefixed by ‘+’, indicating that this search term must
occur/match in the entry. The closing bracket/brace will add a

Chapter 10: Agenda views 107

negative search term which must not occur/match in the entry for
it to be selected.

Remote editing
0-9 Digit argument.

C-_ org-agenda-undo

Undo a change due to a remote editing command. The change is undone both
in the agenda buffer and in the remote buffer.

t org-agenda-todo

Change the TODO state of the item, both in the agenda and in the original
org file.

C-S-RIGHT org-agenda-todo-nextset

C-S-LEFT org-agenda-todo-previousset

Switch to the next/previous set of TODO keywords.

C-k org-agenda-kill

Delete the current agenda item along with the entire subtree belonging to it in
the original Org file. If the text to be deleted remotely is longer than one line,
the kill needs to be confirmed by the user. See variable org-agenda-confirm-
kill.

C-c C-w org-agenda-refile

Refile the entry at point.

C-c C-x C-a or short a org-agenda-archive-default-with-confirmation

Archive the subtree corresponding to the entry at point using the default archiv-
ing command set in org-archive-default-command. When using the a key,
confirmation will be required.

C-c C-x a org-agenda-toggle-archive-tag

Toggle the ARCHIVE tag for the current headline.

C-c C-x A org-agenda-archive-to-archive-sibling

Move the subtree corresponding to the current entry to its archive sibling.

C-c C-x C-s or short $ org-agenda-archive

Archive the subtree corresponding to the current headline. This means the
entry will be moved to the configured archive location, most likely a different
file.

T org-agenda-show-tags

Show all tags associated with the current item. This is useful if you have
turned off org-agenda-show-inherited-tags, but still want to see all tags of
a headline occasionally.

: org-agenda-set-tags

Set tags for the current headline. If there is an active region in the agenda,
change a tag for all headings in the region.

, Set the priority for the current item (org-agenda-priority). Org mode
prompts for the priority character. If you reply with SPC, the priority cookie
is removed from the entry.

Chapter 10: Agenda views 108

P org-agenda-show-priority

Display weighted priority of current item.

+ or S-UP org-agenda-priority-up

Increase the priority of the current item. The priority is changed in the original
buffer, but the agenda is not resorted. Use the r key for this.

- or S-DOWN org-agenda-priority-down

Decrease the priority of the current item.

z or C-c C-z org-agenda-add-note

Add a note to the entry. This note will be recorded, and then filed to the
same location where state change notes are put. Depending on org-log-into-

drawer, this may be inside a drawer.

C-c C-a org-attach

Dispatcher for all command related to attachments.

C-c C-s org-agenda-schedule

Schedule this item. With prefix arg remove the scheduling timestamp

C-c C-d org-agenda-deadline

Set a deadline for this item. With prefix arg remove the deadline.

k org-agenda-action

Agenda actions, to set dates for selected items to the cursor date. This com-
mand also works in the calendar! The command prompts for an additional
key:

m Mark the entry at point for action. You can also make entries
in Org files with C-c C-x C-k.

d Set the deadline of the marked entry to the date at point.
s Schedule the marked entry at the date at point.
r Call org-capture with the cursor date as default date.

Press r afterward to refresh the agenda and see the effect of the command.

S-RIGHT org-agenda-do-date-later

Change the timestamp associated with the current line by one day into the
future. If the date is in the past, the first call to this command will move it to
today.
With a numeric prefix argument, change it by that many days. For example,
3 6 5 S-RIGHT will change it by a year. With a C-u prefix, change the time by
one hour. If you immediately repeat the command, it will continue to change
hours even without the prefix arg. With a double C-u C-u prefix, do the same
for changing minutes.
The stamp is changed in the original Org file, but the change is not directly
reflected in the agenda buffer. Use r or g to update the buffer.

S-LEFT org-agenda-do-date-earlier

Change the timestamp associated with the current line by one day into the
past.

Chapter 10: Agenda views 109

> org-agenda-date-prompt

Change the timestamp associated with the current line. The key > has been
chosen, because it is the same as S-. on my keyboard.

I org-agenda-clock-in

Start the clock on the current item. If a clock is running already, it is stopped
first.

O org-agenda-clock-out

Stop the previously started clock.

X org-agenda-clock-cancel

Cancel the currently running clock.

J org-agenda-clock-goto

Jump to the running clock in another window.

Bulk remote editing selected entries
m org-agenda-bulk-mark

Mark the entry at point for bulk action. With prefix arg, mark that many
successive entries.

% org-agenda-bulk-mark-regexp

Mark entries matching a regular expression for bulk action.

u org-agenda-bulk-unmark

Unmark entry for bulk action.

U org-agenda-bulk-remove-all-marks

Unmark all marked entries for bulk action.

B org-agenda-bulk-action

Bulk action: act on all marked entries in the agenda. This will prompt for
another key to select the action to be applied. The prefix arg to B will be passed
through to the s and d commands, to bulk-remove these special timestamps.

r Prompt for a single refile target and move all entries. The entries
will no longer be in the agenda; refresh (g) to bring them back.

$ Archive all selected entries.
A Archive entries by moving them to their respective archive siblings.
t Change TODO state. This prompts for a single TODO keyword and

changes the state of all selected entries, bypassing blocking and
suppressing logging notes (but not timestamps).

+ Add a tag to all selected entries.
- Remove a tag from all selected entries.
s Schedule all items to a new date. To shift existing schedule dates

by a fixed number of days, use something starting with double plus
at the prompt, for example ‘++8d’ or ‘++2w’.

S Reschedule randomly into the coming N days. N will be prompted for.
With prefix arg (C-u B S), scatter only across weekdays.

d Set deadline to a specific date.
f Apply a function to marked entries.

For example, the function below sets the CATEGORY property of the

Chapter 10: Agenda views 110

entries to web.
(defun set-category ()
(interactive "P")
(let* ((marker (or (org-get-at-bol florg-hd-marker)

(org-agenda-error)))
(buffer (marker-buffer marker)))

(with-current-buffer buffer
(save-excursion
(save-restriction
(widen)
(goto-char marker)
(org-back-to-heading t)
(org-set-property "CATEGORY" "web"))))))

Calendar commands
c org-agenda-goto-calendar

Open the Emacs calendar and move to the date at the agenda cursor.

c org-calendar-goto-agenda

When in the calendar, compute and show the Org mode agenda for the date at
the cursor.

i org-agenda-diary-entry

Insert a new entry into the diary, using the date at the cursor and (for block
entries) the date at the mark. This will add to the Emacs diary file11, in a way
similar to the i command in the calendar. The diary file will pop up in another
window, where you can add the entry.

If you configure org-agenda-diary-file to point to an Org mode file, Org
will create entries (in Org mode syntax) in that file instead. Most entries will
be stored in a date-based outline tree that will later make it easy to archive
appointments from previous months/years. The tree will be built under an
entry with a DATE_TREE property, or else with years as top-level entries. Emacs
will prompt you for the entry text—if you specify it, the entry will be created
in org-agenda-diary-file without further interaction. If you directly press
RET at the prompt without typing text, the target file will be shown in another
window for you to finish the entry there. See also the k r command.

M org-agenda-phases-of-moon

Show the phases of the moon for the three months around current date.

S org-agenda-sunrise-sunset

Show sunrise and sunset times. The geographical location must be set with
calendar variables, see the documentation for the Emacs calendar.

C org-agenda-convert-date

Convert the date at cursor into many other cultural and historic calendars.

H org-agenda-holidays

Show holidays for three months around the cursor date.

11 This file is parsed for the agenda when org-agenda-include-diary is set.

Chapter 10: Agenda views 111

M-x org-export-icalendar-combine-agenda-files

Export a single iCalendar file containing entries from all agenda files. This is a
globally available command, and also available in the agenda menu.

Exporting to a file
C-x C-w org-write-agenda

Write the agenda view to a file. Depending on the extension of the selected
file name, the view will be exported as HTML (extension ‘.html’ or ‘.htm’),
Postscript (extension ‘.ps’), PDF (extension ‘.pdf’), and plain text (any other
extension). When called with a C-u prefix argument, immediately open the
newly created file. Use the variable org-agenda-exporter-settings to set
options for ‘ps-print’ and for ‘htmlize’ to be used during export.

Quit and Exit
q org-agenda-quit

Quit agenda, remove the agenda buffer.

x org-agenda-exit

Exit agenda, remove the agenda buffer and all buffers loaded by Emacs for the
compilation of the agenda. Buffers created by the user to visit Org files will not
be removed.

10.6 Custom agenda views

Custom agenda commands serve two purposes: to store and quickly access frequently used
TODO and tags searches, and to create special composite agenda buffers. Custom agenda
commands will be accessible through the dispatcher (see Section 10.2 [Agenda dispatcher],
page 93), just like the default commands.

10.6.1 Storing searches

The first application of custom searches is the definition of keyboard shortcuts for frequently
used searches, either creating an agenda buffer, or a sparse tree (the latter covering of course
only the current buffer). Custom commands are configured in the variable org-agenda-

custom-commands. You can customize this variable, for example by pressing C-c a C. You
can also directly set it with Emacs Lisp in ‘.emacs’. The following example contains all
valid search types:

(setq org-agenda-custom-commands

'(("w" todo "WAITING")

("W" todo-tree "WAITING")

("u" tags "+boss-urgent")

("v" tags-todo "+boss-urgent")

("U" tags-tree "+boss-urgent")

("f" occur-tree "\\<FIXME\\>")

("h" . "HOME+Name tags searches") ; description for "h" prefix

("hl" tags "+home+Lisa")

("hp" tags "+home+Peter")

("hk" tags "+home+Kim")))

The initial string in each entry defines the keys you have to press after the dispatcher
command C-c a in order to access the command. Usually this will be just a single character,

Chapter 10: Agenda views 112

but if you have many similar commands, you can also define two-letter combinations where
the first character is the same in several combinations and serves as a prefix key12. The
second parameter is the search type, followed by the string or regular expression to be used
for the matching. The example above will therefore define:

C-c a w as a global search for TODO entries with ‘WAITING’ as the TODO keyword

C-c a W as the same search, but only in the current buffer and displaying the results as
a sparse tree

C-c a u as a global tags search for headlines marked ‘:boss:’ but not ‘:urgent:’

C-c a v as the same search as C-c a u, but limiting the search to headlines that are also
TODO items

C-c a U as the same search as C-c a u, but only in the current buffer and displaying the
result as a sparse tree

C-c a f to create a sparse tree (again: current buffer only) with all entries containing
the word ‘FIXME’

C-c a h as a prefix command for a HOME tags search where you have to press an
additional key (l, p or k) to select a name (Lisa, Peter, or Kim) as additional
tag to match.

10.6.2 Block agenda

Another possibility is the construction of agenda views that comprise the results of several
commands, each of which creates a block in the agenda buffer. The available commands
include agenda for the daily or weekly agenda (as created with C-c a a), alltodo for the
global TODO list (as constructed with C-c a t), and the matching commands discussed
above: todo, tags, and tags-todo. Here are two examples:

(setq org-agenda-custom-commands

'(("h" "Agenda and Home-related tasks"

((agenda "")

(tags-todo "home")

(tags "garden")))

("o" "Agenda and Office-related tasks"

((agenda "")

(tags-todo "work")

(tags "office")))))

This will define C-c a h to create a multi-block view for stuff you need to attend to at home.
The resulting agenda buffer will contain your agenda for the current week, all TODO items
that carry the tag ‘home’, and also all lines tagged with ‘garden’. Finally the command C-c

a o provides a similar view for office tasks.

10.6.3 Setting options for custom commands

Org mode contains a number of variables regulating agenda construction and display. The
global variables define the behavior for all agenda commands, including the custom com-
mands. However, if you want to change some settings just for a single custom view, you

12 You can provide a description for a prefix key by inserting a cons cell with the prefix and the description.

Chapter 10: Agenda views 113

can do so. Setting options requires inserting a list of variable names and values at the right
spot in org-agenda-custom-commands. For example:

(setq org-agenda-custom-commands

'(("w" todo "WAITING"

((org-agenda-sorting-strategy '(priority-down))

(org-agenda-prefix-format " Mixed: ")))

("U" tags-tree "+boss-urgent"

((org-show-following-heading nil)

(org-show-hierarchy-above nil)))

("N" search ""

((org-agenda-files '("~org/notes.org"))

(org-agenda-text-search-extra-files nil)))))

Now the C-c a w command will sort the collected entries only by priority, and the prefix for-
mat is modified to just say ‘ Mixed: ’ instead of giving the category of the entry. The sparse
tags tree of C-c a U will now turn out ultra-compact, because neither the headline hierarchy
above the match, nor the headline following the match will be shown. The command C-c

a N will do a text search limited to only a single file.

For command sets creating a block agenda, org-agenda-custom-commands has two sep-
arate spots for setting options. You can add options that should be valid for just a single
command in the set, and options that should be valid for all commands in the set. The
former are just added to the command entry; the latter must come after the list of com-
mand entries. Going back to the block agenda example (see Section 10.6.2 [Block agenda],
page 112), let’s change the sorting strategy for the C-c a h commands to priority-down,
but let’s sort the results for GARDEN tags query in the opposite order, priority-up. This
would look like this:

(setq org-agenda-custom-commands

'(("h" "Agenda and Home-related tasks"

((agenda)

(tags-todo "home")

(tags "garden"

((org-agenda-sorting-strategy '(priority-up)))))

((org-agenda-sorting-strategy '(priority-down))))

("o" "Agenda and Office-related tasks"

((agenda)

(tags-todo "work")

(tags "office")))))

As you see, the values and parentheses setting is a little complex. When in doubt, use
the customize interface to set this variable—it fully supports its structure. Just one caveat:
when setting options in this interface, the values are just Lisp expressions. So if the value
is a string, you need to add the double-quotes around the value yourself.

10.7 Exporting Agenda Views

If you are away from your computer, it can be very useful to have a printed version of some
agenda views to carry around. Org mode can export custom agenda views as plain text,

Chapter 10: Agenda views 114

HTML13, Postscript, PDF14, and iCalendar files. If you want to do this only occasionally,
use the command

C-x C-w org-write-agenda

Write the agenda view to a file. Depending on the extension of the selected file
name, the view will be exported as HTML (extension ‘.html’ or ‘.htm’), Post-
script (extension ‘.ps’), iCalendar (extension ‘.ics’), or plain text (any other
extension). Use the variable org-agenda-exporter-settings to set options
for ‘ps-print’ and for ‘htmlize’ to be used during export, for example

(setq org-agenda-exporter-settings

'((ps-number-of-columns 2)

(ps-landscape-mode t)

(org-agenda-add-entry-text-maxlines 5)

(htmlize-output-type 'css)))

If you need to export certain agenda views frequently, you can associate any custom
agenda command with a list of output file names15. Here is an example that first defines
custom commands for the agenda and the global TODO list, together with a number of
files to which to export them. Then we define two block agenda commands and specify file
names for them as well. File names can be relative to the current working directory, or
absolute.

(setq org-agenda-custom-commands

'(("X" agenda "" nil ("agenda.html" "agenda.ps"))

("Y" alltodo "" nil ("todo.html" "todo.txt" "todo.ps"))

("h" "Agenda and Home-related tasks"

((agenda "")

(tags-todo "home")

(tags "garden"))

nil

("~/views/home.html"))

("o" "Agenda and Office-related tasks"

((agenda)

(tags-todo "work")

(tags "office"))

nil

("~/views/office.ps" "~/calendars/office.ics"))))

The extension of the file name determines the type of export. If it is ‘.html’, Org
mode will use the ‘htmlize.el’ package to convert the buffer to HTML and save it to
this file name. If the extension is ‘.ps’, ps-print-buffer-with-faces is used to produce
Postscript output. If the extension is ‘.ics’, iCalendar export is run export over all files
that were used to construct the agenda, and limit the export to entries listed in the agenda.
Any other extension produces a plain ASCII file.

13 You need to install Hrvoje Niksic’s ‘htmlize.el’.
14 To create PDF output, the ghostscript ‘ps2pdf’ utility must be installed on the system. Selecting a PDF

file will also create the postscript file.
15 If you want to store standard views like the weekly agenda or the global TODO list as well, you need to

define custom commands for them in order to be able to specify file names.

Chapter 10: Agenda views 115

The export files are not created when you use one of those commands interactively
because this might use too much overhead. Instead, there is a special command to produce
all specified files in one step:

C-c a e org-store-agenda-views

Export all agenda views that have export file names associated with them.

You can use the options section of the custom agenda commands to also set options for
the export commands. For example:

(setq org-agenda-custom-commands

'(("X" agenda ""

((ps-number-of-columns 2)

(ps-landscape-mode t)

(org-agenda-prefix-format " [] ")

(org-agenda-with-colors nil)

(org-agenda-remove-tags t))

("theagenda.ps"))))

This command sets two options for the Postscript exporter, to make it print in two columns
in landscape format—the resulting page can be cut in two and then used in a paper agenda.
The remaining settings modify the agenda prefix to omit category and scheduling infor-
mation, and instead include a checkbox to check off items. We also remove the tags to
make the lines compact, and we don’t want to use colors for the black-and-white printer.
Settings specified in org-agenda-exporter-settings will also apply, but the settings in
org-agenda-custom-commands take precedence.

From the command line you may also use

emacs -eval (org-batch-store-agenda-views) -kill

or, if you need to modify some parameters16

emacs -eval '(org-batch-store-agenda-views \

org-agenda-span (quote month) \

org-agenda-start-day "2007-11-01" \

org-agenda-include-diary nil \

org-agenda-files (quote ("~/org/project.org")))' \

-kill

which will create the agenda views restricted to the file ‘~/org/project.org’, without diary
entries and with a 30-day extent.

You can also extract agenda information in a way that allows further processing by other
programs. See Section A.8 [Extracting agenda information], page 213, for more information.

10.8 Using column view in the agenda

Column view (see Section 7.5 [Column view], page 61) is normally used to view and edit
properties embedded in the hierarchical structure of an Org file. It can be quite useful to
use column view also from the agenda, where entries are collected by certain criteria.

C-c C-x C-c org-agenda-columns

Turn on column view in the agenda.

16 Quoting depends on the system you use, please check the FAQ for examples.

Chapter 10: Agenda views 116

To understand how to use this properly, it is important to realize that the entries in the
agenda are no longer in their proper outline environment. This causes the following issues:

1. Org needs to make a decision which COLUMNS format to use. Since the entries in the
agenda are collected from different files, and different files may have different COLUMNS
formats, this is a non-trivial problem. Org first checks if the variable org-agenda-

overriding-columns-format is currently set, and if so, takes the format from there.
Otherwise it takes the format associated with the first item in the agenda, or, if that
item does not have a specific format (defined in a property, or in its file), it uses
org-columns-default-format.

2. If any of the columns has a summary type defined (see Section 7.5.1.2 [Column at-
tributes], page 62), turning on column view in the agenda will visit all relevant agenda
files and make sure that the computations of this property are up to date. This is
also true for the special CLOCKSUM property. Org will then sum the values displayed in
the agenda. In the daily/weekly agenda, the sums will cover a single day; in all other
views they cover the entire block. It is vital to realize that the agenda may show the
same entry twice (for example as scheduled and as a deadline), and it may show two
entries from the same hierarchy (for example a parent and its child). In these cases,
the summation in the agenda will lead to incorrect results because some values will
count double.

3. When the column view in the agenda shows the CLOCKSUM, that is always the entire
clocked time for this item. So even in the daily/weekly agenda, the clocksum listed in
column view may originate from times outside the current view. This has the advantage
that you can compare these values with a column listing the planned total effort for
a task—one of the major applications for column view in the agenda. If you want
information about clocked time in the displayed period use clock table mode (press R
in the agenda).

Chapter 11: Markup for rich export 117

11 Markup for rich export

When exporting Org mode documents, the exporter tries to reflect the structure of the
document as accurately as possible in the backend. Since export targets like HTML, LATEX,
or DocBook allow much richer formatting, Org mode has rules on how to prepare text for
rich export. This section summarizes the markup rules used in an Org mode buffer.

11.1 Structural markup elements

Document title

The title of the exported document is taken from the special line

#+TITLE: This is the title of the document

If this line does not exist, the title is derived from the first non-empty, non-comment line
in the buffer. If no such line exists, or if you have turned off exporting of the text before
the first headline (see below), the title will be the file name without extension.

If you are exporting only a subtree by marking is as the region, the heading of the subtree
will become the title of the document. If the subtree has a property EXPORT_TITLE, that
will take precedence.

Headings and sections

The outline structure of the document as described in Chapter 2 [Document Structure],
page 6, forms the basis for defining sections of the exported document. However, since the
outline structure is also used for (for example) lists of tasks, only the first three outline
levels will be used as headings. Deeper levels will become itemized lists. You can change
the location of this switch globally by setting the variable org-export-headline-levels,
or on a per-file basis with a line

#+OPTIONS: H:4

Table of contents

The table of contents is normally inserted directly before the first headline of the file. If
you would like to get it to a different location, insert the string [TABLE-OF-CONTENTS] on
a line by itself at the desired location. The depth of the table of contents is by default the
same as the number of headline levels, but you can choose a smaller number, or turn off
the table of contents entirely, by configuring the variable org-export-with-toc, or on a
per-file basis with a line like

#+OPTIONS: toc:2 (only to two levels in TOC)

#+OPTIONS: toc:nil (no TOC at all)

Text before the first headline

Org mode normally exports the text before the first headline, and even uses the first line as
the document title. The text will be fully marked up. If you need to include literal HTML,
LATEX, or DocBook code, use the special constructs described below in the sections for the
individual exporters.

Some people like to use the space before the first headline for setup and internal links
and therefore would like to control the exported text before the first headline in a different

Chapter 11: Markup for rich export 118

way. You can do so by setting the variable org-export-skip-text-before-1st-heading

to t. On a per-file basis, you can get the same effect with ‘#+OPTIONS: skip:t’.

If you still want to have some text before the first headline, use the #+TEXT construct:

#+OPTIONS: skip:t

#+TEXT: This text will go before the *first* headline.

#+TEXT: [TABLE-OF-CONTENTS]

#+TEXT: This goes between the table of contents and the *first* headline

Lists

Plain lists as described in Section 2.7 [Plain lists], page 12, are translated to the backend’s
syntax for such lists. Most backends support unordered, ordered, and description lists.

Paragraphs, line breaks, and quoting

Paragraphs are separated by at least one empty line. If you need to enforce a line break
within a paragraph, use ‘\\’ at the end of a line.

To keep the line breaks in a region, but otherwise use normal formatting, you can use
this construct, which can also be used to format poetry.

#+BEGIN_VERSE

Great clouds overhead

Tiny black birds rise and fall

Snow covers Emacs

-- AlexSchroeder

#+END_VERSE

When quoting a passage from another document, it is customary to format this as
a paragraph that is indented on both the left and the right margin. You can include
quotations in Org mode documents like this:

#+BEGIN_QUOTE

Everything should be made as simple as possible,

but not any simpler -- Albert Einstein

#+END_QUOTE

If you would like to center some text, do it like this:

#+BEGIN_CENTER

Everything should be made as simple as possible, \\

but not any simpler

#+END_CENTER

Footnote markup

Footnotes defined in the way described in Section 2.10 [Footnotes], page 15, will be exported
by all backends. Org allows multiple references to the same note, and multiple footnotes
side by side.

Chapter 11: Markup for rich export 119

Emphasis and monospace

You can make words *bold*, /italic/, underlined , =code= and ~verbatim~, and, if you
must, ‘+strike-through+’. Text in the code and verbatim string is not processed for Org
mode specific syntax; it is exported verbatim.

Horizontal rules

A line consisting of only dashes, and at least 5 of them, will be exported as a horizontal
line (‘<hr/>’ in HTML and \hrule in LATEX).

Comment lines

Lines starting with ‘#’ in column zero are treated as comments and will never be exported. If
you want an indented line to be treated as a comment, start it with ‘#+ ’. Also entire subtrees
starting with the word ‘COMMENT’ will never be exported. Finally, regions surrounded by
‘#+BEGIN_COMMENT’ ... ‘#+END_COMMENT’ will not be exported.

C-c ; Toggle the COMMENT keyword at the beginning of an entry.

11.2 Images and Tables

Both the native Org mode tables (see Chapter 3 [Tables], page 18) and tables formatted with
the ‘table.el’ package will be exported properly. For Org mode tables, the lines before
the first horizontal separator line will become table header lines. You can use the following
lines somewhere before the table to assign a caption and a label for cross references, and in
the text you can refer to the object with \ref{tab:basic-data}:

#+CAPTION: This is the caption for the next table (or link)

#+LABEL: tbl:basic-data

| ... | ...|

|-----|----|

Optionally, the caption can take the form:

#+CAPTION: [Caption for list of figures]{Caption for table (or link).}

Some backends (HTML, LATEX, and DocBook) allow you to directly include images
into the exported document. Org does this, if a link to an image files does not have a
description part, for example [[./img/a.jpg]]. If you wish to define a caption for the
image and maybe a label for internal cross references, make sure that the link is on a line
by itself and precede it with #+CAPTION and #+LABEL as follows:

#+CAPTION: This is the caption for the next figure link (or table)

#+LABEL: fig:SED-HR4049

[[./img/a.jpg]]

You may also define additional attributes for the figure. As this is backend-specific, see
the sections about the individual backends for more information.

See Section 4.4 [Handling links], page 36.

11.3 Literal examples

You can include literal examples that should not be subjected to markup. Such examples
will be typeset in monospace, so this is well suited for source code and similar examples.

Chapter 11: Markup for rich export 120

#+BEGIN_EXAMPLE

Some example from a text file.

#+END_EXAMPLE

Note that such blocks may be indented in order to align nicely with indented text and
in particular with plain list structure (see Section 2.7 [Plain lists], page 12). For simplicity
when using small examples, you can also start the example lines with a colon followed by a
space. There may also be additional whitespace before the colon:

Here is an example

: Some example from a text file.

If the example is source code from a programming language, or any other text that can
be marked up by font-lock in Emacs, you can ask for the example to look like the fontified
Emacs buffer1. This is done with the ‘src’ block, where you also need to specify the name
of the major mode that should be used to fontify the example2, see Section 15.2 [Easy
Templates], page 191 for shortcuts to easily insert code blocks.

#+BEGIN_SRC emacs-lisp

(defun org-xor (a b)

"Exclusive or."

(if a (not b) b))

#+END_SRC

Both in example and in src snippets, you can add a -n switch to the end of the BEGIN
line, to get the lines of the example numbered. If you use a +n switch, the numbering from
the previous numbered snippet will be continued in the current one. In literal examples,
Org will interpret strings like ‘(ref:name)’ as labels, and use them as targets for special
hyperlinks like [[(name)]] (i.e. the reference name enclosed in single parenthesis). In
HTML, hovering the mouse over such a link will remote-highlight the corresponding code
line, which is kind of cool.

You can also add a -r switch which removes the labels from the source code3. With
the -n switch, links to these references will be labeled by the line numbers from the code
listing, otherwise links will use the labels with no parentheses. Here is an example:

#+BEGIN_SRC emacs-lisp -n -r

(save-excursion (ref:sc)

(goto-char (point-min)) (ref:jump)

#+END_SRC

In line [[(sc)]] we remember the current position. [[(jump)][Line (jump)]]

1 This works automatically for the HTML backend (it requires version 1.34 of the ‘htmlize.el’ package,
which is distributed with Org). Fontified code chunks in LATEX can be achieved using either the listings
or the minted package. To use listings, turn on the variable org-export-latex-listings and ensure that
the listings package is included by the LATEX header (e.g. by configuring org-export-latex-packages-

alist). See the listings documentation for configuration options, including obtaining colored output. For
minted it is necessary to install the program pygments, in addition to setting org-export-latex-minted,
ensuring that the minted package is included by the LATEX header, and ensuring that the -shell-escape
option is passed to ‘pdflatex’ (see org-latex-to-pdf-process). See the documentation of the variables
org-export-latex-listings and org-export-latex-minted for further details.

2 Code in ‘src’ blocks may also be evaluated either interactively or on export. See see Chapter 14 [Working
With Source Code], page 165 for more information on evaluating code blocks.

3 Adding -k to -n -r will keep the labels in the source code while using line numbers for the links, which
might be useful to explain those in an Org mode example code.

http://code.google.com/p/minted
http://pygments.org

Chapter 11: Markup for rich export 121

jumps to point-min.

If the syntax for the label format conflicts with the language syntax, use a -l switch
to change the format, for example ‘#+BEGIN_SRC pascal -n -r -l "((%s))"’. See also the
variable org-coderef-label-format.

HTML export also allows examples to be published as text areas (see Section 12.5.8
[Text areas in HTML export], page 132).

Because the #+BEGIN_... and #+END_... patterns need to be added so often, shortcuts
are provided using the Easy Templates facility (see Section 15.2 [Easy Templates], page 191).

C-c ’ Edit the source code example at point in its native mode. This works by
switching to a temporary buffer with the source code. You need to exit by
pressing C-c ’ again4. The edited version will then replace the old version
in the Org buffer. Fixed-width regions (where each line starts with a colon
followed by a space) will be edited using artist-mode5 to allow creating ASCII
drawings easily. Using this command in an empty line will create a new fixed-
width region.

C-c l Calling org-store-link while editing a source code example in a temporary
buffer created with C-c ’ will prompt for a label. Make sure that it is unique in
the current buffer, and insert it with the proper formatting like ‘(ref:label)’
at the end of the current line. Then the label is stored as a link ‘(label)’, for
retrieval with C-c C-l.

11.4 Include files

During export, you can include the content of another file. For example, to include your
‘.emacs’ file, you could use:

#+INCLUDE: "~/.emacs" src emacs-lisp

The optional second and third parameter are the markup (e.g. ‘quote’, ‘example’, or ‘src’),
and, if the markup is ‘src’, the language for formatting the contents. The markup is
optional; if it is not given, the text will be assumed to be in Org mode format and will
be processed normally. The include line will also allow additional keyword parameters
:prefix1 and :prefix to specify prefixes for the first line and for each following line,
:minlevel in order to get Org mode content demoted to a specified level, as well as any
options accepted by the selected markup. For example, to include a file as an item, use

#+INCLUDE: "~/snippets/xx" :prefix1 " + " :prefix " "

You can also include a portion of a file by specifying a lines range using the :lines

parameter. The line at the upper end of the range will not be included. The start and/or
the end of the range may be omitted to use the obvious defaults.

#+INCLUDE: "~/.emacs" :lines "5-10" Include lines 5 to 10, 10 excluded
#+INCLUDE: "~/.emacs" :lines "-10" Include lines 1 to 10, 10 excluded
#+INCLUDE: "~/.emacs" :lines "10-" Include lines from 10 to EOF

C-c ’ Visit the include file at point.

4 Upon exit, lines starting with ‘*’ or ‘#’ will get a comma prepended, to keep them from being interpreted
by Org as outline nodes or special comments. These commas will be stripped for editing with C-c ’, and
also for export.

5 You may select a different-mode with the variable org-edit-fixed-width-region-mode.

Chapter 11: Markup for rich export 122

11.5 Index entries

You can specify entries that will be used for generating an index during publishing. This
is done by lines starting with #+INDEX. An entry the contains an exclamation mark will
create a sub item. See Section 13.1.8 [Generating an index], page 161 for more information.

* Curriculum Vitae

#+INDEX: CV

#+INDEX: Application!CV

11.6 Macro replacement

You can define text snippets with

#+MACRO: name replacement text $1, $2 are arguments

which can be referenced anywhere in the document (even in code examples) with
{{{name(arg1,arg2)}}}. In addition to defined macros, {{{title}}}, {{{author}}},
etc., will reference information set by the #+TITLE:, #+AUTHOR:, and similar lines. Also,
{{{date(FORMAT)}}} and {{{modification-time(FORMAT)}}} refer to current date time
and to the modification time of the file being exported, respectively. FORMAT should be
a format string understood by format-time-string.

Macro expansion takes place during export, and some people use it to construct complex
HTML code.

11.7 Embedded LATEX

Plain ASCII is normally sufficient for almost all note taking. Exceptions include scientific
notes, which often require mathematical symbols and the occasional formula. LATEX

6 is
widely used to typeset scientific documents. Org mode supports embedding LATEX code
into its files, because many academics are used to writing and reading LATEX source code,
and because it can be readily processed to produce pretty output for a number of export
backends.

11.7.1 Special symbols

You can use LATEX macros to insert special symbols like ‘\alpha’ to indicate the Greek
letter, or ‘\to’ to indicate an arrow. Completion for these macros is available, just type
‘\’ and maybe a few letters, and press M-TAB to see possible completions. Unlike LATEX
code, Org mode allows these macros to be present without surrounding math delimiters,
for example:

Angles are written as Greek letters \alpha, \beta and \gamma.

During export, these symbols will be transformed into the native format of the exporter
backend. Strings like \alpha will be exported as α in the HTML output, and as
α in the LATEX output. Similarly, \nbsp will become in HTML and ~ in
LATEX. If you need such a symbol inside a word, terminate it like this: ‘\Aacute{}stor’.

A large number of entities is provided, with names taken from both HTML and LATEX;
see the variable org-entities for the complete list. ‘\-’ is treated as a shy hyphen, and

6 LATEX is a macro system based on Donald E. Knuth’s TEX system. Many of the features described here
as “LATEX” are really from TEX, but for simplicity I am blurring this distinction.

Chapter 11: Markup for rich export 123

‘--’, ‘---’, and ‘...’ are all converted into special commands creating hyphens of different
lengths or a compact set of dots.

If you would like to see entities displayed as UTF8 characters, use the following com-
mand7:

C-c C-x \ Toggle display of entities as UTF-8 characters. This does not change the buffer
content which remains plain ASCII, but it overlays the UTF-8 character for
display purposes only.

11.7.2 Subscripts and superscripts

Just like in LATEX, ‘^’ and ‘_’ are used to indicate super- and subscripts. Again, these can
be used without embedding them in math-mode delimiters. To increase the readability of
ASCII text, it is not necessary (but OK) to surround multi-character sub- and superscripts
with curly braces. For example

The mass of the sun is M_sun = 1.989 x 10^30 kg. The radius of

the sun is R_{sun} = 6.96 x 10^8 m.

To avoid interpretation as raised or lowered text, you can quote ‘^’ and ‘_’ with a
backslash: ‘\^’ and ‘_’. If you write a text where the underscore is often used in a
different context, Org’s convention to always interpret these as subscripts can get in your
way. Configure the variable org-export-with-sub-superscripts to globally change this
convention, or use, on a per-file basis:

#+OPTIONS: ^:{}

With this setting, ‘a_b’ will not be interpreted as a subscript, but ‘a_{b}’ will.

C-c C-x \ In addition to showing entities as UTF-8 characters, this command will also
format sub- and superscripts in a WYSIWYM way.

11.7.3 LATEX fragments

Going beyond symbols and sub- and superscripts, a full formula language is needed. Org
mode can contain LATEX math fragments, and it supports ways to process these for several
export backends. When exporting to LATEX, the code is obviously left as it is. When
exporting to HTML, Org invokes the MathJax library (see Section 12.5.7 [Math formatting
in HTML export], page 132) to process and display the math8. Finally, it can also process
the mathematical expressions into images9 that can be displayed in a browser or in DocBook
documents.

LATEX fragments don’t need any special marking at all. The following snippets will be
identified as LATEX source code:

7 You can turn this on by default by setting the variable org-pretty-entities, or on a per-file base with
the #+STARTUP option entitiespretty.

8 If you plan to use this regularly or on pages with significant page views, you should install ‘MathJax’ on
your own server in order to limit the load of our server.

9 For this to work you need to be on a system with a working LATEX installation. You also need the
‘dvipng’ program, available at http://sourceforge.net/projects/dvipng/. The LATEX header that
will be used when processing a fragment can be configured with the variable org-format-latex-header.

http://www.mathjax.org
http://sourceforge.net/projects/dvipng/

Chapter 11: Markup for rich export 124

• Environments of any kind10. The only requirement is that the \begin statement ap-
pears on a new line, preceded by only whitespace.

• Text within the usual LATEX math delimiters. To avoid conflicts with currency spec-
ifications, single ‘$’ characters are only recognized as math delimiters if the enclosed
text contains at most two line breaks, is directly attached to the ‘$’ characters with
no whitespace in between, and if the closing ‘$’ is followed by whitespace, punctuation
or a dash. For the other delimiters, there is no such restriction, so when in doubt, use
‘\(...\)’ as inline math delimiters.

For example:

\begin{equation} % arbitrary environments,

x=\sqrt{b} % even tables, figures

\end{equation} % etc

If $a^2=b$ and \(b=2 \), then the solution must be

either $$ a=+\sqrt{2} $$ or \[a=-\sqrt{2} \].

If you need any of the delimiter ASCII sequences for other purposes, you can configure the
option org-format-latex-options to deselect the ones you do not wish to have interpreted
by the LATEX converter.

LATEX processing can be configured with the variable org-export-with-LaTeX-

fragments. The default setting is t which means ‘MathJax’ for HTML, and no processing
for DocBook, ASCII and LATEX backends. You can also set this variable on a per-file basis
using one of these lines:

#+OPTIONS: LaTeX:t Do the right thing automatically (MathJax)
#+OPTIONS: LaTeX:dvipng Force using dvipng images
#+OPTIONS: LaTeX:nil Do not process LATEX fragments at all
#+OPTIONS: LaTeX:verbatim Verbatim export, for jsMath or so

11.7.4 Previewing LATEX fragments

If you have ‘dvipng’ installed, LATEX fragments can be processed to produce preview images
of the typeset expressions:

C-c C-x C-l

Produce a preview image of the LATEX fragment at point and overlay it over
the source code. If there is no fragment at point, process all fragments in the
current entry (between two headlines). When called with a prefix argument,
process the entire subtree. When called with two prefix arguments, or when
the cursor is before the first headline, process the entire buffer.

C-c C-c Remove the overlay preview images.

You can customize the variable org-format-latex-options to influence some aspects
of the preview. In particular, the :scale (and for HTML export, :html-scale) property
can be used to adjust the size of the preview images.

10 When ‘MathJax’ is used, only the environment recognized by ‘MathJax’ will be processed. When ‘dvipng’
is used to create images, any LATEX environments will be handled.

Chapter 11: Markup for rich export 125

11.7.5 Using CDLATEX to enter math

CDLATEX mode is a minor mode that is normally used in combination with a major LATEX
mode like AUCTEX in order to speed-up insertion of environments and math templates.
Inside Org mode, you can make use of some of the features of CDLATEX mode. You need
to install ‘cdlatex.el’ and ‘texmathp.el’ (the latter comes also with AUCTEX) from
http://www.astro.uva.nl/~dominik/Tools/cdlatex. Don’t use CDLATEX mode itself
under Org mode, but use the light version org-cdlatex-mode that comes as part of Org
mode. Turn it on for the current buffer with M-x org-cdlatex-mode, or for all Org files
with

(add-hook 'org-mode-hook 'turn-on-org-cdlatex)

When this mode is enabled, the following features are present (for more details see the
documentation of CDLATEX mode):

• Environment templates can be inserted with C-c {.

• The TAB key will do template expansion if the cursor is inside a LATEX fragment11. For
example, TAB will expand fr to \frac{}{} and position the cursor correctly inside the
first brace. Another TAB will get you into the second brace. Even outside fragments,
TAB will expand environment abbreviations at the beginning of a line. For example,
if you write ‘equ’ at the beginning of a line and press TAB, this abbreviation will be
expanded to an equation environment. To get a list of all abbreviations, type M-x

cdlatex-command-help.

• Pressing _ and ^ inside a LATEX fragment will insert these characters together with a
pair of braces. If you use TAB to move out of the braces, and if the braces surround
only a single character or macro, they are removed again (depending on the variable
cdlatex-simplify-sub-super-scripts).

• Pressing the backquote ‘ followed by a character inserts math macros, also outside
LATEX fragments. If you wait more than 1.5 seconds after the backquote, a help window
will pop up.

• Pressing the single-quote ’ followed by another character modifies the symbol before
point with an accent or a font. If you wait more than 1.5 seconds after the single-
quote, a help window will pop up. Character modification will work only inside LATEX
fragments; outside the quote is normal.

11 Org mode has a method to test if the cursor is inside such a fragment, see the documentation of the
function org-inside-LaTeX-fragment-p.

http://www.astro.uva.nl/~dominik/Tools/cdlatex

Chapter 12: Exporting 126

12 Exporting

Org mode documents can be exported into a variety of other formats. For printing and
sharing of notes, ASCII export produces a readable and simple version of an Org file. HTML
export allows you to publish a notes file on the web, while the XOXO format provides a solid
base for exchange with a broad range of other applications. LATEX export lets you use Org
mode and its structured editing functions to easily create LATEX files. DocBook export makes
it possible to convert Org files to many other formats using DocBook tools. OpenDocument
Text (ODT) export allows seamless collaboration across organizational boundaries. For
project management you can create gantt and resource charts by using TaskJuggler export.
To incorporate entries with associated times like deadlines or appointments into a desktop
calendar program like iCal, Org mode can also produce extracts in the iCalendar format.
Currently, Org mode only supports export, not import of these different formats.

Org supports export of selected regions when transient-mark-mode is enabled (default
in Emacs 23).

12.1 Selective export

You may use tags to select the parts of a document that should be exported, or to
exclude parts from export. This behavior is governed by two variables: org-export-

select-tags and org-export-exclude-tags, respectively defaulting to '(:export:)

and '(:noexport:).

1. Org first checks if any of the select tags is present in the buffer. If yes, all trees that
do not carry one of these tags will be excluded. If a selected tree is a subtree, the
heading hierarchy above it will also be selected for export, but not the text below those
headings.

2. If none of the select tags is found, the whole buffer will be selected for export.

3. Finally, all subtrees that are marked by any of the exclude tags will be removed from
the export buffer.

The variable org-export-with-tasks can be configured to select which kind of tasks
should be included for export. See the docstring of the variable for more information.

12.2 Export options

The exporter recognizes special lines in the buffer which provide additional information.
These lines may be put anywhere in the file. The whole set of lines can be inserted into the
buffer with C-c C-e t. For individual lines, a good way to make sure the keyword is correct
is to type ‘#+’ and then use M-TAB completion (see Section 15.1 [Completion], page 191). For
a summary of other in-buffer settings not specifically related to export, see Section 15.6 [In-
buffer settings], page 193. In particular, note that you can place commonly-used (export)
options in a separate file which can be included using #+SETUPFILE.

C-c C-e t org-insert-export-options-template

Insert template with export options, see example below.

#+TITLE: the title to be shown (default is the buffer name)

#+AUTHOR: the author (default taken from user-full-name)

Chapter 12: Exporting 127

#+DATE: a date, an Org timestamp1, or a format string for format-

time-string

#+EMAIL: his/her email address (default from user-mail-address)

#+DESCRIPTION: the page description, e.g. for the XHTML meta tag

#+KEYWORDS: the page keywords, e.g. for the XHTML meta tag

#+LANGUAGE: language for HTML, e.g. ‘en’ (org-export-default-language)

#+TEXT: Some descriptive text to be inserted at the beginning.

#+TEXT: Several lines may be given.

#+OPTIONS: H:2 num:t toc:t \n:nil @:t ::t |:t ^:t f:t TeX:t ...

#+BIND: lisp-var lisp-val, e.g.: org-export-latex-low-levels itemize

You need to confirm using these, or configure org-export-allow-BIND
#+LINK_UP: the ``up'' link of an exported page

#+LINK_HOME: the ``home'' link of an exported page

#+LATEX_HEADER: extra line(s) for the LATEX header, like \usepackage{xyz}

#+EXPORT_SELECT_TAGS: Tags that select a tree for export

#+EXPORT_EXCLUDE_TAGS: Tags that exclude a tree from export

#+XSLT: the XSLT stylesheet used by DocBook exporter to generate FO file

The #+OPTIONS line is a compact2 form to specify export settings. Here you can:

H: set the number of headline levels for export
num: turn on/off section-numbers
toc: turn on/off table of contents, or set level limit (integer)
\n: turn on/off line-break-preservation (DOES NOT WORK)
@: turn on/off quoted HTML tags
:: turn on/off fixed-width sections
|: turn on/off tables
^: turn on/off TEX-like syntax for sub- and superscripts. If

you write "^:{}", a_{b} will be interpreted, but
the simple a_b will be left as it is.

-: turn on/off conversion of special strings.
f: turn on/off footnotes like this[1].
todo: turn on/off inclusion of TODO keywords into exported text
tasks: turn on/off inclusion of tasks (TODO items), can be nil to remove

all tasks, todo to remove DONE tasks, or list of kwds to keep
pri: turn on/off priority cookies
tags: turn on/off inclusion of tags, may also be not-in-toc
<: turn on/off inclusion of any time/date stamps like DEADLINES
*: turn on/off emphasized text (bold, italic, underlined)
TeX: turn on/off simple TEX macros in plain text
LaTeX: configure export of LATEX fragments. Default auto
skip: turn on/off skipping the text before the first heading
author: turn on/off inclusion of author name/email into exported file
email: turn on/off inclusion of author email into exported file
creator: turn on/off inclusion of creator info into exported file
timestamp: turn on/off inclusion creation time into exported file

1 org-export-date-timestamp-format defines how this timestamp will be exported.
2 If you want to configure many options this way, you can use several #+OPTIONS lines.

Chapter 12: Exporting 128

d: turn on/off inclusion of drawers

These options take effect in both the HTML and LATEX export, except for TeX and LaTeX

options, which are respectively t and nil for the LATEX export.

The default values for these and many other options are given by a set of variables. For
a list of such variables, the corresponding OPTIONS keys and also the publishing keys (see
Section 13.1.1 [Project alist], page 157), see the constant org-export-plist-vars.

When exporting only a single subtree by selecting it with C-c @ before calling an ex-
port command, the subtree can overrule some of the file’s export settings with proper-
ties EXPORT_FILE_NAME, EXPORT_TITLE, EXPORT_TEXT, EXPORT_AUTHOR, EXPORT_DATE, and
EXPORT_OPTIONS.

12.3 The export dispatcher

All export commands can be reached using the export dispatcher, which is a prefix key that
prompts for an additional key specifying the command. Normally the entire file is exported,
but if there is an active region that contains one outline tree, the first heading is used as
document title and the subtrees are exported.

C-c C-e org-export

Dispatcher for export and publishing commands. Displays a help-window list-
ing the additional key(s) needed to launch an export or publishing command.
The prefix arg is passed through to the exporter. A double prefix C-u C-u

causes most commands to be executed in the background, in a separate Emacs
process3.

C-c C-e v org-export-visible

Like C-c C-e, but only export the text that is currently visible (i.e. not hidden
by outline visibility).

C-u C-u C-c C-e org-export

Call the exporter, but reverse the setting of org-export-run-in-background,
i.e. request background processing if not set, or force processing in the current
Emacs process if set.

12.4 ASCII/Latin-1/UTF-8 export

ASCII export produces a simple and very readable version of an Org mode file, containing
only plain ASCII. Latin-1 and UTF-8 export augment the file with special characters and
symbols available in these encodings.

C-c C-e a org-export-as-ascii

Export as ASCII file. For an Org file, ‘myfile.org’, the ASCII file will be
‘myfile.txt’. The file will be overwritten without warning. If there is an
active region4, only the region will be exported. If the selected region is a single
tree5, the tree head will become the document title. If the tree head entry

3 To make this behavior the default, customize the variable org-export-run-in-background.
4 This requires transient-mark-mode be turned on.
5 To select the current subtree, use C-c @.

Chapter 12: Exporting 129

has or inherits an EXPORT_FILE_NAME property, that name will be used for the
export.

C-c C-e A org-export-as-ascii-to-buffer

Export to a temporary buffer. Do not create a file.

C-c C-e n org-export-as-latin1

C-c C-e N org-export-as-latin1-to-buffer

Like the above commands, but use Latin-1 encoding.

C-c C-e u org-export-as-utf8

C-c C-e U org-export-as-utf8-to-buffer

Like the above commands, but use UTF-8 encoding.

C-c C-e v a/n/u

Export only the visible part of the document.

In the exported version, the first 3 outline levels will become headlines, defining a general
document structure. Additional levels will be exported as itemized lists. If you want that
transition to occur at a different level, specify it with a prefix argument. For example,

C-1 C-c C-e a

creates only top level headlines and does the rest as items. When headlines are converted
to items, the indentation of the text following the headline is changed to fit nicely under
the item. This is done with the assumption that the first body line indicates the base
indentation of the body text. Any indentation larger than this is adjusted to preserve the
layout relative to the first line. Should there be lines with less indentation than the first,
these are left alone.

Links will be exported in a footnote-like style, with the descriptive part in the text and
the link in a note before the next heading. See the variable org-export-ascii-links-to-
notes for details and other options.

12.5 HTML export

Org mode contains an HTML (XHTML 1.0 strict) exporter with extensive HTML format-
ting, in ways similar to John Gruber’s markdown language, but with additional support for
tables.

12.5.1 HTML export commands

C-c C-e h org-export-as-html

Export as HTML file. For an Org file ‘myfile.org’, the HTML file will be
‘myfile.html’. The file will be overwritten without warning. If there is an
active region6, only the region will be exported. If the selected region is a single
tree7, the tree head will become the document title. If the tree head entry
has, or inherits, an EXPORT_FILE_NAME property, that name will be used for the
export.

6 This requires transient-mark-mode be turned on.
7 To select the current subtree, use C-c @.

Chapter 12: Exporting 130

C-c C-e b org-export-as-html-and-open

Export as HTML file and immediately open it with a browser.

C-c C-e H org-export-as-html-to-buffer

Export to a temporary buffer. Do not create a file.

C-c C-e R org-export-region-as-html

Export the active region to a temporary buffer. With a prefix argument, do
not produce the file header and footer, but just the plain HTML section for the
region. This is good for cut-and-paste operations.

C-c C-e v h/b/H/R

Export only the visible part of the document.

M-x org-export-region-as-html

Convert the region to HTML under the assumption that it was Org mode syntax
before. This is a global command that can be invoked in any buffer.

M-x org-replace-region-by-HTML

Replace the active region (assumed to be in Org mode syntax) by HTML code.

In the exported version, the first 3 outline levels will become headlines, defining a general
document structure. Additional levels will be exported as itemized lists. If you want that
transition to occur at a different level, specify it with a numeric prefix argument. For
example,

C-2 C-c C-e b

creates two levels of headings and does the rest as items.

12.5.2 HTML preamble and postamble

The HTML exporter lets you define a preamble and a postamble.

The default value for org-export-html-preamble is t, which means that the preamble
is inserted depending on the relevant formatting string in org-export-html-preamble-

format.

Setting org-export-html-preamble to a string will override the default formatting
string. Setting it to a function, will insert the output of the function, which must be a
string; such a function takes no argument but you can check against the value of opt-
plist, which contains the list of publishing properties for the current file. Setting to nil

will not insert any preamble.

The default value for org-export-html-postamble is 'auto, which means that the
HTML exporter will look for the value of org-export-author-info, org-export-email-
info, org-export-creator-info and org-export-time-stamp-file, org-export-html-
validation-link and build the postamble from these values. Setting org-export-html-

postamble to t will insert the postamble from the relevant formatting string found in
org-export-html-postamble-format. Setting it to nil will not insert any postamble.

12.5.3 Quoting HTML tags

Plain ‘<’ and ‘>’ are always transformed to ‘<’ and ‘>’ in HTML export. If you want
to include simple HTML tags which should be interpreted as such, mark them with ‘@’ as in
‘@bold text@’. Note that this really works only for simple tags. For more extensive
HTML that should be copied verbatim to the exported file use either

Chapter 12: Exporting 131

#+HTML: Literal HTML code for export

or

#+BEGIN_HTML

All lines between these markers are exported literally

#+END_HTML

12.5.4 Links in HTML export

Internal links (see Section 4.2 [Internal links], page 34) will continue to work in HTML.
This includes automatic links created by radio targets (see Section 4.2.1 [Radio targets],
page 35). Links to external files will still work if the target file is on the same relative path as
the published Org file. Links to other ‘.org’ files will be translated into HTML links under
the assumption that an HTML version also exists of the linked file, at the same relative
path. ‘id:’ links can then be used to jump to specific entries across files. For information
related to linking files while publishing them to a publishing directory see Section 13.1.6
[Publishing links], page 160.

If you want to specify attributes for links, you can do so using a special #+ATTR_HTML
line to define attributes that will be added to the <a> or tags. Here is an example
that sets title and style attributes for a link:

#+ATTR_HTML: title="The Org mode homepage" style="color:red;"

[[http://orgmode.org]]

12.5.5 Tables

Org mode tables are exported to HTML using the table tag defined in org-export-html-

table-tag. The default setting makes tables without cell borders and frame. If you would
like to change this for individual tables, place something like the following before the table:

#+CAPTION: This is a table with lines around and between cells

#+ATTR_HTML: border="2" rules="all" frame="border"

12.5.6 Images in HTML export

HTML export can inline images given as links in the Org file, and it can make an image the
clickable part of a link. By default8, images are inlined if a link does not have a description.
So ‘[[file:myimg.jpg]]’ will be inlined, while ‘[[file:myimg.jpg][the image]]’ will
just produce a link ‘the image’ that points to the image. If the description part itself is a
file: link or a http: URL pointing to an image, this image will be inlined and activated
so that clicking on the image will activate the link. For example, to include a thumbnail
that will link to a high resolution version of the image, you could use:

[[file:highres.jpg][file:thumb.jpg]]

If you need to add attributes to an inlined image, use a #+ATTR_HTML. In the example
below we specify the alt and title attributes to support text viewers and accessibility,
and align it to the right.

#+CAPTION: A black cat stalking a spider

#+ATTR_HTML: alt="cat/spider image" title="Action!" align="right"

[[./img/a.jpg]]

You could use http addresses just as well.

8 But see the variable org-export-html-inline-images.

Chapter 12: Exporting 132

12.5.7 Math formatting in HTML export

LATEX math snippets (see Section 11.7.3 [LATEX fragments], page 123) can be displayed
in two different ways on HTML pages. The default is to use the MathJax system which
should work out of the box with Org mode installation because http://orgmode.org serves
‘MathJax’ for Org mode users for small applications and for testing purposes. If you plan
to use this regularly or on pages with significant page views, you should install9 MathJax
on your own server in order to limit the load of our server. To configure ‘MathJax’, use the
variable org-export-html-mathjax-options or insert something like the following into
the buffer:

#+MATHJAX: align:"left" mathml:t path:"/MathJax/MathJax.js"

See the docstring of the variable org-export-html-mathjax-options for the meaning of
the parameters in this line.

If you prefer, you can also request that LATEX fragments are processed into small images
that will be inserted into the browser page. Before the availability of MathJax, this was the
default method for Org files. This method requires that the ‘dvipng’ program is available
on your system. You can still get this processing with

#+OPTIONS: LaTeX:dvipng

12.5.8 Text areas in HTML export

An alternative way to publish literal code examples in HTML is to use text areas, where
the example can even be edited before pasting it into an application. It is triggered by a -t

switch at an example or src block. Using this switch disables any options for syntax and
label highlighting, and line numbering, which may be present. You may also use -h and -w

switches to specify the height and width of the text area, which default to the number of
lines in the example, and 80, respectively. For example

#+BEGIN_EXAMPLE -t -w 40

(defun org-xor (a b)

"Exclusive or."

(if a (not b) b))

#+END_EXAMPLE

12.5.9 CSS support

You can also give style information for the exported file. The HTML exporter assigns the
following special CSS classes10 to appropriate parts of the document—your style specifica-
tions may change these, in addition to any of the standard classes like for headlines, tables,
etc.

p.author author information, including email
p.date publishing date
p.creator creator info, about org mode version
.title document title
.todo TODO keywords, all not-done states

9 Installation instructions can be found on the MathJax website, see http://www.mathjax.org/resources/docs/?installation.html.
10 If the classes on TODO keywords and tags lead to conflicts, use the variables org-export-html-todo-

kwd-class-prefix and org-export-html-tag-class-prefix to make them unique.

http://www.mathjax.org
http://www.mathjax.org/resources/docs/?installation.html

Chapter 12: Exporting 133

.done the DONE keywords, all states that count as done

.WAITING each TODO keyword also uses a class named after itself

.timestamp timestamp

.timestamp-kwd keyword associated with a timestamp, like SCHEDULED

.timestamp-wrapper span around keyword plus timestamp

.tag tag in a headline

._HOME each tag uses itself as a class, "@" replaced by " "

.target target for links

.linenr the line number in a code example

.code-highlighted for highlighting referenced code lines
div.outline-N div for outline level N (headline plus text))
div.outline-text-N extra div for text at outline level N
.section-number-N section number in headlines, different for each level
div.figure how to format an inlined image
pre.src formatted source code
pre.example normal example
p.verse verse paragraph
div.footnotes footnote section headline
p.footnote footnote definition paragraph, containing a footnote
.footref a footnote reference number (always a <sup>)
.footnum footnote number in footnote definition (always <sup>)

Each exported file contains a compact default style that defines these classes in a basic
way11. You may overwrite these settings, or add to them by using the variables org-

export-html-style (for Org-wide settings) and org-export-html-style-extra (for more
fine-grained settings, like file-local settings). To set the latter variable individually for each
file, you can use

#+STYLE: <link rel="stylesheet" type="text/css" href="stylesheet.css" />

For longer style definitions, you can use several such lines. You could also directly write a
<style> </style> section in this way, without referring to an external file.

In order to add styles to a subtree, use the :HTML_CONTAINER_CLASS: property to assign
a class to the tree. In order to specify CSS styles for a particular headline, you can use the
id specified in a :CUSTOM_ID: property.

12.5.10 JavaScript supported display of web pages

Sebastian Rose has written a JavaScript program especially designed to enhance the
web viewing experience of HTML files created with Org. This program allows you to
view large files in two different ways. The first one is an Info-like mode where each
section is displayed separately and navigation can be done with the n and p keys (and
some other keys as well, press ? for an overview of the available keys). The second view
type is a folding view much like Org provides inside Emacs. The script is available
at http://orgmode.org/org-info.js and you can find the documentation for it at
http://orgmode.org/worg/code/org-info-js/. We host the script at our site, but if
you use it a lot, you might not want to be dependent on orgmode.org and prefer to install
a local copy on your own web server.

11 This style is defined in the constant org-export-html-style-default, which you should not modify.
To turn inclusion of these defaults off, customize org-export-html-style-include-default

http://orgmode.org/org-info.js
http://orgmode.org/worg/code/org-info-js/
orgmode.org

Chapter 12: Exporting 134

To use the script, you need to make sure that the ‘org-jsinfo.el’ module gets loaded.
It should be loaded by default, but you can try M-x customize-variable RET org-modules

RET to convince yourself that this is indeed the case. All it then takes to make use of the
program is adding a single line to the Org file:

#+INFOJS_OPT: view:info toc:nil

If this line is found, the HTML header will automatically contain the code needed to invoke
the script. Using the line above, you can set the following viewing options:

path: The path to the script. The default is to grab the script from
http://orgmode.org/org-info.js, but you might want to have
a local copy and use a path like ‘../scripts/org-info.js’.

view: Initial view when website is first shown. Possible values are:
info Info-like interface with one section per page.
overview Folding interface, initially showing only top-level.
content Folding interface, starting with all headlines visible.
showall Folding interface, all headlines and text visible.

sdepth: Maximum headline level that will still become an independent
section for info and folding modes. The default is taken from
org-export-headline-levels (= the H switch in #+OPTIONS).
If this is smaller than in org-export-headline-levels, each
info/folding section can still contain child headlines.

toc: Should the table of contents initially be visible?
Even when nil, you can always get to the "toc" with i.

tdepth: The depth of the table of contents. The defaults are taken from
the variables org-export-headline-levels and org-export-with-toc.

ftoc: Does the CSS of the page specify a fixed position for the "toc"?
If yes, the toc will never be displayed as a section.

ltoc: Should there be short contents (children) in each section?
Make this above if the section should be above initial text.

mouse: Headings are highlighted when the mouse is over them. Should be
‘underline’ (default) or a background color like ‘#cccccc’.

buttons: Should view-toggle buttons be everywhere? When nil (the
default), only one such button will be present.

You can choose default values for these options by customizing the variable org-infojs-

options. If you always want to apply the script to your pages, configure the variable
org-export-html-use-infojs.

12.6 LATEX and PDF export

Org mode contains a LATEX exporter written by Bastien Guerry. With further processing12,
this backend is also used to produce PDF output. Since the LATEX output uses ‘hyperref’
to implement links and cross references, the PDF output file will be fully linked. Beware of
the fact that your org file has to be properly structured in order to be correctly exported:
respect the hierarchy of sections.

12 The default LATEX output is designed for processing with pdftex or LATEX. It includes packages that
are not compatible with xetex and possibly luatex. See the variables org-export-latex-default-

packages-alist and org-export-latex-packages-alist.

http://orgmode.org/org-info.js

Chapter 12: Exporting 135

12.6.1 LATEX export commands

C-c C-e l org-export-as-latex

Export as LATEX file. For an Org file ‘myfile.org’, the LATEX file will be
‘myfile.tex’. The file will be overwritten without warning. If there is an
active region13, only the region will be exported. If the selected region is a
single tree14, the tree head will become the document title. If the tree head
entry has or inherits an EXPORT_FILE_NAME property, that name will be used
for the export.

C-c C-e L org-export-as-latex-to-buffer

Export to a temporary buffer. Do not create a file.

C-c C-e v l/L

Export only the visible part of the document.

M-x org-export-region-as-latex

Convert the region to LATEX under the assumption that it was Org mode syntax
before. This is a global command that can be invoked in any buffer.

M-x org-replace-region-by-latex

Replace the active region (assumed to be in Org mode syntax) by LATEX code.

C-c C-e p org-export-as-pdf

Export as LATEX and then process to PDF.

C-c C-e d org-export-as-pdf-and-open

Export as LATEX and then process to PDF, then open the resulting PDF file.

In the exported version, the first 3 outline levels will become headlines, defining a general
document structure. Additional levels will be exported as description lists. The exporter
can ignore them or convert them to a custom string depending on org-latex-low-levels.

If you want that transition to occur at a different level, specify it with a numeric prefix
argument. For example,

C-2 C-c C-e l

creates two levels of headings and does the rest as items.

12.6.2 Header and sectioning structure

By default, the LATEX output uses the class article.

You can change this globally by setting a different value for org-export-latex-

default-class or locally by adding an option like #+LaTeX_CLASS: myclass in your file,
or with a :LaTeX_CLASS: property that applies when exporting a region containing only
this (sub)tree. The class must be listed in org-export-latex-classes. This variable
defines a header template for each class15, and allows you to define the sectioning structure
for each class. You can also define your own classes there. #+LaTeX_CLASS_OPTIONS or a
LaTeX_CLASS_OPTIONS property can specify the options for the \documentclass macro.

13 This requires transient-mark-mode be turned on.
14 To select the current subtree, use C-c @.
15 Into which the values of org-export-latex-default-packages-alist and org-export-latex-

packages-alist are spliced.

Chapter 12: Exporting 136

You can also use #+LATEX_HEADER: \usepackage{xyz} to add lines to the header. See the
docstring of org-export-latex-classes for more information.

12.6.3 Quoting LATEX code

Embedded LATEX as described in Section 11.7 [Embedded LATEX], page 122, will be correctly
inserted into the LATEX file. This includes simple macros like ‘\ref{LABEL}’ to create a cross
reference to a figure. Furthermore, you can add special code that should only be present in
LATEX export with the following constructs:

#+LaTeX: Literal LATEX code for export

or

#+BEGIN_LaTeX

All lines between these markers are exported literally

#+END_LaTeX

12.6.4 Tables in LATEX export

For LATEX export of a table, you can specify a label, a caption and placement options
(see Section 11.2 [Images and tables], page 119). You can also use the ATTR_LaTeX line to
request a longtable environment for the table, so that it may span several pages, or to
change the default table environment from table to table* or to change the default inner
tabular environment to tabularx or tabulary. Finally, you can set the alignment string,
and (with tabularx or tabulary) the width:

#+CAPTION: A long table

#+LABEL: tbl:long

#+ATTR_LaTeX: longtable align=l|lp{3cm}r|l

| | |

| | |

or to specify a multicolumn table with tabulary

#+CAPTION: A wide table with tabulary

#+LABEL: tbl:wide

#+ATTR_LaTeX: table* tabulary width=\textwidth

| | |

| | |

12.6.5 Images in LATEX export

Images that are linked to without a description part in the link, like ‘[[file:img.jpg]]’ or
‘[[./img.jpg]]’ will be inserted into the PDF output file resulting from LATEX processing.
Org will use an \includegraphics macro to insert the image. If you have specified a
caption and/or a label as described in Section 11.2 [Images and tables], page 119, the figure
will be wrapped into a figure environment and thus become a floating element. You can
use an #+ATTR_LaTeX: line to specify various other options. You can ask org to export an
image as a float without specifying a label or a caption by using the keyword float in this
line. Various optional arguments to the \includegraphics macro can also be specified in
this fashion. To modify the placement option of the floating environment, add something
like ‘placement=[h!]’ to the attributes. It is to be noted this option can be used with

Chapter 12: Exporting 137

tables as well16. For example the #+ATTR_LaTeX: line below is exported as the figure

environment below it.

If you would like to let text flow around the image, add the word ‘wrap’ to the #+ATTR_
LaTeX: line, which will make the figure occupy the left half of the page. To fine-tune,
the placement field will be the set of additional arguments needed by the wrapfigure

environment. Note that if you change the size of the image, you need to use compatible
settings for \includegraphics and wrapfigure.

#+CAPTION: The black-body emission of the disk around HR 4049

#+LABEL: fig:SED-HR4049

#+ATTR_LaTeX: width=5cm,angle=90

[[./img/sed-hr4049.pdf]]

#+ATTR_LaTeX: width=0.38\textwidth wrap placement={r}{0.4\textwidth}

[[./img/hst.png]]

If you wish to include an image which spans multiple columns in a page, you can use
the keyword multicolumn in the #+ATTR_LaTeX line. This will export the image wrapped
in a figure* environment.

If you need references to a label created in this way, write ‘\ref{fig:SED-HR4049}’ just
like in LATEX.

12.6.6 Beamer class export

The LATEX class ‘beamer’ allows production of high quality presentations using LATEX and
pdf processing. Org mode has special support for turning an Org mode file or tree into a
‘beamer’ presentation.

When the LATEX class for the current buffer (as set with #+LaTeX_CLASS: beamer) or
subtree (set with a LaTeX_CLASS property) is beamer, a special export mode will turn the
file or tree into a beamer presentation. Any tree with not-too-deep level nesting should in
principle be exportable as a beamer presentation. By default, the top-level entries (or the
first level below the selected subtree heading) will be turned into frames, and the outline
structure below this level will become itemize lists. You can also configure the variable org-
beamer-frame-level to a different level—then the hierarchy above frames will produce the
sectioning structure of the presentation.

A template for useful in-buffer settings or properties can be inserted into the buffer
with M-x org-insert-beamer-options-template. Among other things, this will install a
column view format which is very handy for editing special properties used by beamer.

You can influence the structure of the presentation using the following properties:

BEAMER_env

The environment that should be used to format this entry. Valid environments
are defined in the constant org-beamer-environments-default, and you can
define more in org-beamer-environments-extra. If this property is set, the
entry will also get a :B_environment: tag to make this visible. This tag has
no semantic meaning, it is only a visual aid.

16 One can also take advantage of this option to pass other, unrelated options into the
figure or table environment. For an example see the section “Exporting org files” in
http://orgmode.org/worg/org-hacks.html

http://orgmode.org/worg/org-hacks.html

Chapter 12: Exporting 138

BEAMER_envargs

The beamer-special arguments that should be used for the environment, like
[t] or [<+->] of <2-3>. If the BEAMER_col property is also set, something
like C[t] can be added here as well to set an options argument for the implied
columns environment. c[t] or c<2-> will set an options for the implied column

environment.

BEAMER_col

The width of a column that should start with this entry. If this property is set,
the entry will also get a :BMCOL: property to make this visible. Also this tag
is only a visual aid. When this is a plain number, it will be interpreted as a
fraction of \textwidth. Otherwise it will be assumed that you have specified
the units, like ‘3cm’. The first such property in a frame will start a columns

environment to surround the columns. This environment is closed when an
entry has a BEAMER_col property with value 0 or 1, or automatically at the end
of the frame.

BEAMER_extra

Additional commands that should be inserted after the environment has been
opened. For example, when creating a frame, this can be used to specify tran-
sitions.

Frames will automatically receive a fragile option if they contain source code that uses
the verbatim environment. Special ‘beamer’ specific code can be inserted using #+BEAMER:

and #+BEGIN_beamer...#+end_beamer constructs, similar to other export backends, but
with the difference that #+LaTeX: stuff will be included in the presentation as well.

Outline nodes with BEAMER_env property value ‘note’ or ‘noteNH’ will be formatted as
beamer notes, i,e, they will be wrapped into \note{...}. The former will include the
heading as part of the note text, the latter will ignore the heading of that node. To simplify
note generation, it is actually enough to mark the note with a tag (either :B_note: or
:B_noteNH:) instead of creating the BEAMER_env property.

You can turn on a special minor mode org-beamer-mode for editing support with

#+STARTUP: beamer

C-c C-b org-beamer-select-environment

In org-beamer-mode, this key offers fast selection of a beamer environment or
the BEAMER_col property.

Column view provides a great way to set the environment of a node and other impor-
tant parameters. Make sure you are using a COLUMN format that is geared toward this
special purpose. The command M-x org-insert-beamer-options-template defines such
a format.

Here is a simple example Org document that is intended for beamer export.
#+LaTeX_CLASS: beamer

#+TITLE: Example Presentation

#+AUTHOR: Carsten Dominik

#+LaTeX_CLASS_OPTIONS: [presentation]

#+BEAMER_FRAME_LEVEL: 2

#+BEAMER_HEADER_EXTRA: \usetheme{Madrid}\usecolortheme{default}

#+COLUMNS: %35ITEM %10BEAMER_env(Env) %10BEAMER_envargs(Args) %4BEAMER_col(Col) %8BEAMER_extra(Ex)

Chapter 12: Exporting 139

* This is the first structural section

** Frame 1 \\ with a subtitle

*** Thanks to Eric Fraga :BMCOL:B_block:

:PROPERTIES:

:BEAMER_env: block

:BEAMER_envargs: C[t]

:BEAMER_col: 0.5

:END:

for the first viable beamer setup in Org

*** Thanks to everyone else :BMCOL:B_block:

:PROPERTIES:

:BEAMER_col: 0.5

:BEAMER_env: block

:BEAMER_envargs: <2->

:END:

for contributing to the discussion

**** This will be formatted as a beamer note :B_note:

** Frame 2 \\ where we will not use columns

*** Request :B_block:

Please test this stuff!

:PROPERTIES:

:BEAMER_env: block

:END:

For more information, see the documentation on Worg.

12.7 DocBook export

Org contains a DocBook exporter written by Baoqiu Cui. Once an Org file is exported
to DocBook format, it can be further processed to produce other formats, including PDF,
HTML, man pages, etc., using many available DocBook tools and stylesheets.

Currently DocBook exporter only supports DocBook V5.0.

12.7.1 DocBook export commands

C-c C-e D org-export-as-docbook

Export as DocBook file. For an Org file, ‘myfile.org’, the DocBook XML file
will be ‘myfile.xml’. The file will be overwritten without warning. If there is
an active region17, only the region will be exported. If the selected region is
a single tree18, the tree head will become the document title. If the tree head
entry has, or inherits, an EXPORT_FILE_NAME property, that name will be used
for the export.

C-c C-e V org-export-as-docbook-pdf-and-open

Export as DocBook file, process to PDF, then open the resulting PDF file.

Note that, in order to produce PDF output based on exported DocBook file,
you need to have XSLT processor and XSL-FO processor software installed on
your system. Check variables org-export-docbook-xslt-proc-command and
org-export-docbook-xsl-fo-proc-command.

17 This requires transient-mark-mode to be turned on
18 To select the current subtree, use C-c @.

Chapter 12: Exporting 140

The stylesheet argument %s in variable org-export-docbook-xslt-proc-

command is replaced by the value of variable org-export-docbook-xslt-

stylesheet, which needs to be set by the user. You can also overrule this
global setting on a per-file basis by adding an in-buffer setting #+XSLT: to the
Org file.

C-c C-e v D

Export only the visible part of the document.

12.7.2 Quoting DocBook code

You can quote DocBook code in Org files and copy it verbatim into exported DocBook file
with the following constructs:

#+DOCBOOK: Literal DocBook code for export

or

#+BEGIN_DOCBOOK

All lines between these markers are exported by DocBook exporter

literally.

#+END_DOCBOOK

For example, you can use the following lines to include a DocBook warning admonition.
As to what this warning says, you should pay attention to the document context when
quoting DocBook code in Org files. You may make exported DocBook XML files invalid by
not quoting DocBook code correctly.

#+BEGIN_DOCBOOK

<warning>

<para>You should know what you are doing when quoting DocBook XML code

in your Org file. Invalid DocBook XML may be generated by

DocBook exporter if you are not careful!</para>

</warning>

#+END_DOCBOOK

12.7.3 Recursive sections

DocBook exporter exports Org files as articles using the article element in DocBook.
Recursive sections, i.e. section elements, are used in exported articles. Top level headlines
in Org files are exported as top level sections, and lower level headlines are exported as
nested sections. The entire structure of Org files will be exported completely, no matter
how many nested levels of headlines there are.

Using recursive sections makes it easy to port and reuse exported DocBook code in other
DocBook document types like book or set.

12.7.4 Tables in DocBook export

Tables in Org files are exported as HTML tables, which have been supported since DocBook
V4.3.

If a table does not have a caption, an informal table is generated using the
informaltable element; otherwise, a formal table will be generated using the table

element.

Chapter 12: Exporting 141

12.7.5 Images in DocBook export

Images that are linked to without a description part in the link, like ‘[[file:img.jpg]]’
or ‘[[./img.jpg]]’, will be exported to DocBook using mediaobject elements. Each
mediaobject element contains an imageobject that wraps an imagedata element. If you
have specified a caption for an image as described in Section 11.2 [Images and tables],
page 119, a caption element will be added in mediaobject. If a label is also specified, it
will be exported as an xml:id attribute of the mediaobject element.

Image attributes supported by the imagedata element, like align or width, can be
specified in two ways: you can either customize variable org-export-docbook-default-

image-attributes or use the #+ATTR_DOCBOOK: line. Attributes specified in variable org-
export-docbook-default-image-attributes are applied to all inline images in the Org
file to be exported (unless they are overridden by image attributes specified in #+ATTR_

DOCBOOK: lines).

The #+ATTR_DOCBOOK: line can be used to specify additional image attributes or override
default image attributes for individual images. If the same attribute appears in both the
#+ATTR_DOCBOOK: line and variable org-export-docbook-default-image-attributes,
the former takes precedence. Here is an example about how image attributes can be set:

#+CAPTION: The logo of Org mode

#+LABEL: unicorn-svg

#+ATTR_DOCBOOK: scalefit="1" width="100%" depth="100%"

[[./img/org-mode-unicorn.svg]]

By default, DocBook exporter recognizes the following image file types: ‘jpeg’, ‘jpg’,
‘png’, ‘gif’, and ‘svg’. You can customize variable org-export-docbook-inline-image-

extensions to add more types to this list as long as DocBook supports them.

12.7.6 Special characters in DocBook export

Special characters that are written in TEX-like syntax, such as \alpha, \Gamma, and \Zeta,
are supported by DocBook exporter. These characters are rewritten to XML entities, like
α, Γ, and Ζ, based on the list saved in variable org-entities. As long
as the generated DocBook file includes the corresponding entities, these special characters
are recognized.

You can customize variable org-export-docbook-doctype to include the entities you
need. For example, you can set variable org-export-docbook-doctype to the following
value to recognize all special characters included in XHTML entities:

"<!DOCTYPE article [

<!ENTITY % xhtml1-symbol PUBLIC

\"-//W3C//ENTITIES Symbol for HTML//EN//XML\"

\"http://www.w3.org/2003/entities/2007/xhtml1-symbol.ent\"

>

%xhtml1-symbol;

]>

"

Chapter 12: Exporting 142

12.8 OpenDocument Text export

Orgmode19 supports export to OpenDocument Text (ODT) format using the ‘org-odt.el’
module. Documents created by this exporter use the OpenDocument-v1.2 specification20

and are compatible with LibreOffice 3.4.

12.8.1 Pre-requisites for ODT export

The ODT exporter relies on the ‘zip’ program to create the final output. Check the
availability of this program before proceeding further.

12.8.2 ODT export commands

Exporting to ODT

C-c C-e o org-export-as-odt

Export as OpenDocument Text file.

If org-export-odt-preferred-output-format is specified, automatically con-
vert the exported file to that format. See [Automatically exporting to other
formats], page 142.

For an Org file ‘myfile.org’, the ODT file will be ‘myfile.odt’. The file will
be overwritten without warning. If there is an active region,21 only the region
will be exported. If the selected region is a single tree,22 the tree head will
become the document title. If the tree head entry has, or inherits, an EXPORT_

FILE_NAME property, that name will be used for the export.

C-c C-e O org-export-as-odt-and-open

Export as OpenDocument Text file and open the resulting file.

If org-export-odt-preferred-output-format is specified, open the converted
file instead. See [Automatically exporting to other formats], page 142.

12.8.3 Extending ODT export

The ODT exporter can interface with a variety of document converters and supports popular
converters out of the box. As a result, you can use it to export to formats like ‘doc’ or
convert a document from one format (say ‘csv’) to another format (say ‘ods’ or ‘xls’).

If you have a working installation of LibreOffice, a document converter is pre-configured
for you and you can use it right away. If you would like to use ‘unoconv’ as your pre-
ferred converter, customize the variable org-export-odt-convert-process to point to
unoconv. You can also use your own favorite converter or tweak the default settings of the
‘LibreOffice’ and ‘unoconv’ converters. See Section 12.8.11.1 [Configuring a document
converter], page 148.

12.8.3.1 Automatically exporting to other formats

Very often, you will find yourself exporting to ODT format, only to immediately save the
exported document to other formats like ‘doc’, ‘docx’, ‘rtf’, ‘pdf’ etc. In such cases, you

19 Versions 7.8 or later
20 Open Document Format for Office Applications (OpenDocument) Version 1.2
21 This requires transient-mark-mode to be turned on
22 To select the current subtree, use C-c @

http://docs.oasis-open.org/office/v1.2/OpenDocument-v1.2.html

Chapter 12: Exporting 143

can specify your preferred output format by customizing the variable org-export-odt-

preferred-output-format. This way, the export commands (see [Exporting to ODT],
page 142) can be extended to export to a format that is of immediate interest to you.

12.8.3.2 Converting between document formats

There are many document converters in the wild which support conversion to and from
various file formats, including, but not limited to the ODT format. LibreOffice converter,
mentioned above, is one such converter. Once a converter is configured, you can interact
with it using the following command.

M-x org-export-odt-convert

Convert an existing document from one format to another. With a prefix ar-
gument, also open the newly produced file.

12.8.4 Applying custom styles

The ODT exporter ships with a set of OpenDocument styles (see Section 12.8.11.2 [Working
with OpenDocument style files], page 148) that ensure a well-formatted output. These
factory styles, however, may not cater to your specific tastes. To customize the output, you
can either modify the above styles files directly, or generate the required styles using an
application like LibreOffice. The latter method is suitable for expert and non-expert users
alike, and is described here.

12.8.4.1 Applying custom styles - the easy way

1. Create a sample ‘example.org’ file with the below settings and export it to ODT
format.

#+OPTIONS: H:10 num:t

2. Open the above ‘example.odt’ using LibreOffice. Use the ‘Stylist’ to locate the
target styles - these typically have the ‘Org’ prefix - and modify those to your taste.
Save the modified file either as an OpenDocument Text (‘.odt’) or OpenDocument
Template (‘.ott’) file.

3. Customize the variable org-export-odt-styles-file and point it to the newly cre-
ated file. For additional configuration options see [Overriding factory styles], page 148.

If you would like to choose a style on a per-file basis, you can use the #+ODT_STYLES_

FILE option. A typical setting will look like

#+ODT_STYLES_FILE: "/path/to/example.ott"

or

#+ODT_STYLES_FILE: ("/path/to/file.ott" ("styles.xml" "image/hdr.png"))

12.8.4.2 Using third-party styles and templates

You can use third-party styles and templates for customizing your output. This will produce
the desired output only if the template provides all style names that the ‘ODT’ exporter relies
on. Unless this condition is met, the output is going to be less than satisfactory. So it is
highly recommended that you only work with templates that are directly derived from the
factory settings.

Chapter 12: Exporting 144

12.8.5 Links in ODT export

ODT exporter creates native cross-references for internal links. It creates Internet-style
links for all other links.

A link with no description and destined to a regular (un-itemized) outline heading is
replaced with a cross-reference and section number of the heading.

A ‘\ref{label}’-style reference to an image, table etc. is replaced with a cross-reference
and sequence number of the labeled entity. See Section 12.8.9 [Labels and captions in ODT
export], page 147.

12.8.6 Tables in ODT export

Export of native Org mode tables (see Chapter 3 [Tables], page 18) and simple ‘table.el’
tables is supported. However, export of complex ‘table.el’ tables - tables that have column
or row spans - is not supported. Such tables are stripped from the exported document.

By default, a table is exported with top and bottom frames and with rules separating
row and column groups (see Section 3.3 [Column groups], page 22). Furthermore, all tables
are typeset to occupy the same width. If the table specifies alignment and relative width
for its columns (see Section 3.2 [Column width and alignment], page 21) then these are
honored on export.23

You can control the width of the table by specifying :rel-width property using an
#+ATTR_ODT line.

For example, consider the following table which makes use of all the rules mentioned
above.

#+ATTR_ODT: :rel-width 50

| Area/Month | Jan | Feb | Mar | Sum |

|---------------+-------+-------+-------+-------|

| / | < | | | < |

| <l13> | <r5> | <r5> | <r5> | <r6> |

| North America | 1 | 21 | 926 | 948 |

| Middle East | 6 | 75 | 844 | 925 |

| Asia Pacific | 9 | 27 | 790 | 826 |

|---------------+-------+-------+-------+-------|

| Sum | 16 | 123 | 2560 | 2699 |

On export, the table will occupy 50% of text area. The columns will be sized (roughly)
in the ratio of 13:5:5:5:6. The first column will be left-aligned and rest of the columns will
be right-aligned. There will be vertical rules after separating the header and last columns
from other columns. There will be horizontal rules separating the header and last rows from
other rows.

If you are not satisfied with the above formatting options, you can create custom table
styles and associate them with a table using the #+ATTR_ODT line. See Section 12.8.11.4
[Customizing tables in ODT export], page 150.

12.8.7 Images in ODT export

23 The column widths are interpreted as weighted ratios with the default weight being 1

Chapter 12: Exporting 145

Embedding images

You can embed images within the exported document by providing a link to the desired
image file with no link description. For example, to embed ‘img.png’ do either of the
following:

[[file:img.png]]

[[./img.png]]

Embedding clickable images

You can create clickable images by providing a link whose description is a link to an image
file. For example, to embed a image ‘org-mode-unicorn.png’ which when clicked jumps
to http://Orgmode.org website, do the following

[[http://orgmode.org][./org-mode-unicorn.png]]

Sizing and scaling of embedded images

You can control the size and scale of the embedded images using the #+ATTR_ODT attribute.

The exporter specifies the desired size of the image in the final document in units of cen-
timeters. In order to scale the embedded images, the exporter queries for pixel dimensions of
the images using one of a) ImageMagick’s ‘identify’ program or b) Emacs ‘create-image’
and ‘image-size’ APIs.24 The pixel dimensions are subsequently converted in to units of
centimeters using org-export-odt-pixels-per-inch. The default value of this variable is
set to display-pixels-per-inch. You can tweak this variable to achieve the best results.

The examples below illustrate the various possibilities.

Explicitly size the image
To embed ‘img.png’ as a 10 cm x 10 cm image, do the following:

#+ATTR_ODT: :width 10 :height 10

[[./img.png]]

Scale the image
To embed ‘img.png’ at half its size, do the following:

#+ATTR_ODT: :scale 0.5

[[./img.png]]

Scale the image to a specific width
To embed ‘img.png’ with a width of 10 cm while retaining the original
height:width ratio, do the following:

#+ATTR_ODT: :width 10

[[./img.png]]

Scale the image to a specific height
To embed ‘img.png’ with a height of 10 cm while retaining the original
height:width ratio, do the following

#+ATTR_ODT: :height 10

[[./img.png]]

24 Use of ‘ImageMagick’ is only desirable. However, if you routinely produce documents that have large
images or you export your Org files that has images using a Emacs batch script, then the use of
‘ImageMagick’ is mandatory.

http://Orgmode.org

Chapter 12: Exporting 146

Anchoring of images

You can control the manner in which an image is anchored by setting the :anchor property
of it’s #+ATTR_ODT line. You can specify one of the the following three values for the :anchor
property - ‘"as-char"’, ‘"paragraph"’ and ‘"page"’.

To create an image that is anchored to a page, do the following:

#+ATTR_ODT: :anchor "page"

[[./img.png]]

12.8.8 Math formatting in ODT export

The ODT exporter has special support for handling math.

12.8.8.1 Working with LATEX math snippets

LATEX math snippets (see Section 11.7.3 [LATEX fragments], page 123) can be embedded in
the ODT document in one of the following ways:

1. MathML

This option is activated on a per-file basis with

#+OPTIONS: LaTeX:t

With this option, LATEX fragments are first converted into MathML fragments using
an external LATEX-to-MathML converter program. The resulting MathML fragments
are then embedded as an OpenDocument Formula in the exported document.

You can specify the LATEX-to-MathML converter by customizing the variables org-

latex-to-mathml-convert-command and org-latex-to-mathml-jar-file.

If you prefer to use ‘MathToWeb’25 as your converter, you can configure the above
variables as shown below.

(setq org-latex-to-mathml-convert-command

"java -jar %j -unicode -force -df %o %I"

org-latex-to-mathml-jar-file

"/path/to/mathtoweb.jar")

You can use the following commands to quickly verify the reliability of the LATEX-to-
MathML converter.

M-x org-export-as-odf

Convert a LATEX math snippet to OpenDocument formula (‘.odf’) file.

M-x org-export-as-odf-and-open

Convert a LATEX math snippet to OpenDocument formula (‘.odf’) file and
open the formula file with the system-registered application.

2. PNG images

This option is activated on a per-file basis with

#+OPTIONS: LaTeX:dvipng

With this option, LATEX fragments are processed into PNG images and the resulting im-
ages are embedded in the exported document. This method requires that the ‘dvipng’
program be available on your system.

25 See MathToWeb

http://www.mathtoweb.com/cgi-bin/mathtoweb_home.pl

Chapter 12: Exporting 147

12.8.8.2 Working with MathML or OpenDocument formula files

For various reasons, you may find embedding LATEX math snippets in an ODT document
less than reliable. In that case, you can embed a math equation by linking to its MathML
(‘.mml’) source or its OpenDocument formula (‘.odf’) file as shown below:

[[./equation.mml]]

or

[[./equation.odf]]

12.8.9 Labels and captions in ODT export

You can label and caption various category of objects - an inline image, a table, a LATEX
fragment or a Math formula - using #+LABEL and #+CAPTION lines. See Section 11.2 [Images
and tables], page 119. ODT exporter enumerates each labeled or captioned object of a given
category separately. As a result, each such object is assigned a sequence number based on
order of it’s appearance in the Org file.

In the exported document, a user-provided caption is augmented with the category and
sequence number. Consider the following inline image in an Org file.

#+CAPTION: Bell curve

#+LABEL: fig:SED-HR4049

[[./img/a.png]]

It could be rendered as shown below in the exported document.

Figure 2: Bell curve

You can modify the category component of the caption by customizing the variable org-
export-odt-category-strings. For example, to tag all embedded images with the string
‘Illustration’ (instead of the default ‘Figure’) use the following setting.

(setq org-export-odt-category-strings

'(("en" "Table" "Illustration" "Equation" "Equation")))

With this, previous image will be captioned as below in the exported document.

Illustration 2: Bell curve

12.8.10 Literal examples in ODT export

Export of literal examples (see Section 11.3 [Literal examples], page 119) with full fontif-
ication is supported. Internally, the exporter relies on ‘htmlfontify.el’ to generate all
style definitions needed for a fancy listing.26 The auto-generated styles have ‘OrgSrc’ as
prefix and inherit their color from the faces used by Emacs font-lock library for the source
language.

If you prefer to use your own custom styles for fontification, you can do so by customizing
the variable org-export-odt-create-custom-styles-for-srcblocks.

You can turn off fontification of literal examples by customizing the variable org-

export-odt-fontify-srcblocks.

12.8.11 Advanced topics in ODT export

If you rely heavily on ODT export, you may want to exploit the full set of features that the
exporter offers. This section describes features that would be of interest to power users.

26 Your ‘htmlfontify.el’ library must at least be at Emacs 24.1 levels for fontification to be turned on.

Chapter 12: Exporting 148

12.8.11.1 Configuring a document converter

The ODT exporter can work with popular converters with little or no extra configuration
from your side. See Section 12.8.3 [Extending ODT export], page 142. If you are using a
converter that is not supported by default or if you would like to tweak the default converter
settings, proceed as below.

1. Register the converter

Name your converter and add it to the list of known converters by customizing the
variable org-export-odt-convert-processes. Also specify how the converter can be
invoked via command-line to effect the conversion.

2. Configure its capabilities

Specify the set of formats the converter can handle by customizing the variable org-

export-odt-convert-capabilities. Use the default value for this variable as a guide
for configuring your converter. As suggested by the default setting, you can specify
the full set of formats supported by the converter and not limit yourself to specifying
formats that are related to just the OpenDocument Text format.

3. Choose the converter

Select the newly added converter as the preferred one by customizing the variable
org-export-odt-convert-process.

12.8.11.2 Working with OpenDocument style files

This section explores the internals of the ODT exporter and the means by which it produces
styled documents. Read this section if you are interested in exploring the automatic and
custom OpenDocument styles used by the exporter.

Factory styles

The ODT exporter relies on two files for generating its output. These files are bundled with
the distribution under the directory pointed to by the variable org-odt-styles-dir. The
two files are:

• ‘OrgOdtStyles.xml’

This file contributes to the ‘styles.xml’ file of the final ‘ODT’ document. This file gets
modified for the following purposes:

1. To control outline numbering based on user settings.

2. To add styles generated by ‘htmlfontify.el’ for fontification of code blocks.

• ‘OrgOdtContentTemplate.xml’

This file contributes to the ‘content.xml’ file of the final ‘ODT’ document. The con-
tents of the Org outline are inserted between the ‘<office:text>’. . . ‘</office:text>’
elements of this file.

Apart from serving as a template file for the final ‘content.xml’, the file serves the
following purposes:

1. It contains automatic styles for formatting of tables which are referenced by the
exporter.

2. It contains ‘<text:sequence-decl>’. . . ‘</text:sequence-decl>’ elements that
control how various entities - tables, images, equations etc - are numbered.

Chapter 12: Exporting 149

Overriding factory styles

The following two variables control the location from which the ODT exporter picks up the
custom styles and content template files. You can customize these variables to override the
factory styles used by the exporter.

• org-export-odt-styles-file

Use this variable to specify the ‘styles.xml’ that will be used in the final output. You
can specify one of the following values:

1. A ‘styles.xml’ file

Use this file instead of the default ‘styles.xml’

2. A ‘.odt’ or ‘.ott’ file

Use the ‘styles.xml’ contained in the specified OpenDocument Text or Template
file

3. A ‘.odt’ or ‘.ott’ file and a subset of files contained within them

Use the ‘styles.xml’ contained in the specified OpenDocument Text or Template
file. Additionally extract the specified member files and embed those within the
final ‘ODT’ document.

Use this option if the ‘styles.xml’ file references additional files like header and
footer images.

4. nil

Use the default ‘styles.xml’

• org-export-odt-content-template-file

Use this variable to specify the blank ‘content.xml’ that will be used in the final
output.

12.8.11.3 Creating one-off styles

There are times when you would want one-off formatting in the exported document. You
can achieve this by embedding raw OpenDocument XML in the Org file. The use of this
feature is better illustrated with couple of examples.

1. Embedding ODT tags as part of regular text

You can include simple OpenDocument tags by prefixing them with ‘@’. For example,
to highlight a region of text do the following:

@<text:span text:style-name="Highlight">This is a

highlighted text@</text:span>. But this is a

regular text.

Hint: To see the above example in action, edit your ‘styles.xml’ (see [Factory styles],
page 148) and add a custom ‘Highlight’ style as shown below.

<style:style style:name="Highlight" style:family="text">

<style:text-properties fo:background-color="#ff0000"/>

</style:style>

2. Embedding a one-line OpenDocument XML

You can add a simple OpenDocument one-liner using the #+ODT: directive. For exam-
ple, to force a page break do the following:

Chapter 12: Exporting 150

#+ODT: <text:p text:style-name="PageBreak"/>

Hint: To see the above example in action, edit your ‘styles.xml’ (see [Factory styles],
page 148) and add a custom ‘PageBreak’ style as shown below.

<style:style style:name="PageBreak" style:family="paragraph"

style:parent-style-name="Text_20_body">

<style:paragraph-properties fo:break-before="page"/>

</style:style>

3. Embedding a block of OpenDocument XML

You can add a large block of OpenDocument XML using the #+BEGIN_ODT. . .#+END_
ODT construct.

For example, to create a one-off paragraph that uses bold text, do the following:

#+BEGIN_ODT

<text:p text:style-name="Text_20_body_20_bold">

This paragraph is specially formatted and uses bold text.

</text:p>

#+END_ODT

12.8.11.4 Customizing tables in ODT export

You can override the default formatting of the table by specifying a custom table style with
the #+ATTR_ODT line. For a discussion on default formatting of tables see Section 12.8.6
[Tables in ODT export], page 144.

This feature closely mimics the way table templates are defined in the OpenDocument-
v1.2 specification.27

Custom table styles - an illustration

To have a quick preview of this feature, install the below setting and export the table that
follows.

(setq org-export-odt-table-styles

(append org-export-odt-table-styles

'(("TableWithHeaderRowAndColumn" "Custom"

((use-first-row-styles . t)

(use-first-column-styles . t)))

("TableWithFirstRowandLastRow" "Custom"

((use-first-row-styles . t)

(use-last-row-styles . t))))))

#+ATTR_ODT: :style "TableWithHeaderRowAndColumn"

| Name | Phone | Age |

| Peter | 1234 | 17 |

| Anna | 4321 | 25 |

In the above example, you used a template named ‘Custom’ and installed two table styles
with the names ‘TableWithHeaderRowAndColumn’ and ‘TableWithFirstRowandLastRow’.
(Important: The OpenDocument styles needed for producing the above template have
been pre-defined for you. These styles are available under the section marked ‘Custom

27 OpenDocument-v1.2 Specification

http://docs.oasis-open.org/office/v1.2/OpenDocument-v1.2.html

Chapter 12: Exporting 151

Table Template’ in ‘OrgOdtContentTemplate.xml’ (see [Factory styles], page 148). If you
need additional templates you have to define these styles yourselves.

Custom table styles - the nitty-gritty

To use this feature proceed as follows:

1. Create a table template28

A table template is nothing but a set of ‘table-cell’ and ‘paragraph’ styles for each
of the following table cell categories:

− Body

− First column

− Last column

− First row

− Last row

− Even row

− Odd row

− Even column

− Odd Column

The names for the above styles must be chosen based on the name of the table template
using a well-defined convention.

The naming convention is better illustrated with an example. For a table template
with the name ‘Custom’, the needed style names are listed in the following table.

Table cell type table-cell style paragraph style

Body ‘CustomTableCell’ ‘CustomTableParagraph’
First column ‘CustomFirstColumnTableCell’ ‘CustomFirstColumnTableParagraph’
Last column ‘CustomLastColumnTableCell’ ‘CustomLastColumnTableParagraph’
First row ‘CustomFirstRowTableCell’ ‘CustomFirstRowTableParagraph’
Last row ‘CustomLastRowTableCell’ ‘CustomLastRowTableParagraph’
Even row ‘CustomEvenRowTableCell’ ‘CustomEvenRowTableParagraph’
Odd row ‘CustomOddRowTableCell’ ‘CustomOddRowTableParagraph’
Even column ‘CustomEvenColumnTableCell’ ‘CustomEvenColumnTableParagraph’
Odd column ‘CustomOddColumnTableCell’ ‘CustomOddColumnTableParagraph’

To create a table template with the name ‘Custom’, define the above styles in the
<office:automatic-styles>...</office:automatic-styles> element of the content
template file (see [Factory styles], page 148).

2. Define a table style29

To define a table style, create an entry for the style in the variable org-export-odt-

table-styles and specify the following:

28 See the <table:table-template> element of the OpenDocument-v1.2 specification
29 See the attributes table:template-name, table:use-first-row-styles, table:use-last-row-styles,

table:use-first-column-styles, table:use-last-column-styles, table:use-banding-

rows-styles, and table:use-banding-column-styles of the <table:table> element in the
OpenDocument-v1.2 specification

Chapter 12: Exporting 152

− the name of the table template created in step (1)

− the set of cell styles in that template that are to be activated

For example, the entry below defines two different table styles ‘TableWithHeaderRowAndColumn’
and ‘TableWithFirstRowandLastRow’ based on the same template ‘Custom’. The
styles achieve their intended effect by selectively activating the individual cell styles
in that template.

(setq org-export-odt-table-styles

(append org-export-odt-table-styles

'(("TableWithHeaderRowAndColumn" "Custom"

((use-first-row-styles . t)

(use-first-column-styles . t)))

("TableWithFirstRowandLastRow" "Custom"

((use-first-row-styles . t)

(use-last-row-styles . t))))))

3. Associate a table with the table style

To do this, specify the table style created in step (2) as part of the ATTR_ODT line as
shown below.

#+ATTR_ODT: :style "TableWithHeaderRowAndColumn"

| Name | Phone | Age |

| Peter | 1234 | 17 |

| Anna | 4321 | 25 |

12.8.11.5 Validating OpenDocument XML

Occasionally, you will discover that the document created by the ODT exporter cannot
be opened by your favorite application. One of the common reasons for this is that the
‘.odt’ file is corrupt. In such cases, you may want to validate the document against the
OpenDocument RELAX NG Compact Syntax (RNC) schema.

For de-compressing the ‘.odt’ file30: See Info file ‘emacs’, node ‘File Archives’. For
general help with validation (and schema-sensitive editing) of XML files: See Info file
‘nxml-mode’, node ‘Introduction’.

If you have ready access to OpenDocument ‘.rnc’ files and the needed schema-locating
rules in a single folder, you can customize the variable org-export-odt-schema-dir to
point to that directory. The ODT exporter will take care of updating the rng-schema-

locating-files for you.

12.9 TaskJuggler export

TaskJuggler is a project management tool. It provides an optimizing scheduler that com-
putes your project time lines and resource assignments based on the project outline and the
constraints that you have provided.

The TaskJuggler exporter is a bit different from other exporters, such as the HTML and
LATEX exporters for example, in that it does not export all the nodes of a document or
strictly follow the order of the nodes in the document.

30 ‘.odt’ files are nothing but ‘zip’ archives

http://www.taskjuggler.org/

Chapter 12: Exporting 153

Instead the TaskJuggler exporter looks for a tree that defines the tasks and a optionally
tree that defines the resources for this project. It then creates a TaskJuggler file based on
these trees and the attributes defined in all the nodes.

12.9.1 TaskJuggler export commands

C-c C-e j org-export-as-taskjuggler

Export as TaskJuggler file.

C-c C-e J org-export-as-taskjuggler-and-open

Export as TaskJuggler file and then open the file with TaskJugglerUI.

12.9.2 Tasks

Create your tasks as you usually do with Org mode. Assign efforts to each
task using properties (it is easiest to do this in the column view). You
should end up with something similar to the example by Peter Jones in
http://www.contextualdevelopment.com/static/artifacts/articles/2008/project-planning/project-planning.org.
Now mark the top node of your tasks with a tag named :taskjuggler_project: (or
whatever you customized org-export-taskjuggler-project-tag to). You are now ready
to export the project plan with C-c C-e J which will export the project plan and open a
gantt chart in TaskJugglerUI.

12.9.3 Resources

Next you can define resources and assign those to work on specific tasks. You can group your
resources hierarchically. Tag the top node of the resources with :taskjuggler_resource:

(or whatever you customized org-export-taskjuggler-resource-tag to). You can op-
tionally assign an identifier (named ‘resource_id’) to the resources (using the standard
Org properties commands, see Section 7.1 [Property syntax], page 58) or you can let the
exporter generate identifiers automatically (the exporter picks the first word of the headline
as the identifier as long as it is unique—see the documentation of org-taskjuggler-get-
unique-id). Using that identifier you can then allocate resources to tasks. This is again
done with the ‘allocate’ property on the tasks. Do this in column view or when on the
task type C-c C-x p allocate RET <resource_id> RET.

Once the allocations are done you can again export to TaskJuggler and check in the
Resource Allocation Graph which person is working on what task at what time.

12.9.4 Export of properties

The exporter also takes TODO state information into consideration, i.e. if a task is marked
as done it will have the corresponding attribute in TaskJuggler (‘complete 100’). Also it
will export any property on a task resource or resource node which is known to TaskJuggler,
such as ‘limits’, ‘vacation’, ‘shift’, ‘booking’, ‘efficiency’, ‘journalentry’, ‘rate’ for
resources or ‘account’, ‘start’, ‘note’, ‘duration’, ‘end’, ‘journalentry’, ‘milestone’,
‘reference’, ‘responsible’, ‘scheduling’, etc for tasks.

12.9.5 Dependencies

The exporter will handle dependencies that are defined in the tasks either with the ‘ORDERED’
attribute (see Section 5.2.7 [TODO dependencies], page 46), with the ‘BLOCKER’ attribute

http://www.contextualdevelopment.com/static/artifacts/articles/2008/project-planning/project-planning.org

Chapter 12: Exporting 154

(see ‘org-depend.el’) or alternatively with a ‘depends’ attribute. Both the ‘BLOCKER’ and
the ‘depends’ attribute can be either ‘previous-sibling’ or a reference to an identifier
(named ‘task_id’) which is defined for another task in the project. ‘BLOCKER’ and the
‘depends’ attribute can define multiple dependencies separated by either space or comma.
You can also specify optional attributes on the dependency by simply appending it. The
following examples should illustrate this:

* Preparation

:PROPERTIES:

:task_id: preparation

:ORDERED: t

:END:

* Training material

:PROPERTIES:

:task_id: training_material

:ORDERED: t

:END:

** Markup Guidelines

:PROPERTIES:

:Effort: 2d

:END:

** Workflow Guidelines

:PROPERTIES:

:Effort: 2d

:END:

* Presentation

:PROPERTIES:

:Effort: 2d

:BLOCKER: training_material { gapduration 1d } preparation

:END:

12.9.6 Reports

TaskJuggler can produce many kinds of reports (e.g. gantt chart, resource allocation, etc).
The user defines what kind of reports should be generated for a project in the TaskJuggler
file. The exporter will automatically insert some default reports in the file. These de-
faults are defined in org-export-taskjuggler-default-reports. They can be modified
using customize along with a number of other options. For a more complete list, see M-x

customize-group RET org-export-taskjuggler RET.

For more information and examples see the Org-taskjuggler tutorial at
http://orgmode.org/worg/org-tutorials/org-taskjuggler.html.

12.10 Freemind export

The Freemind exporter was written by Lennart Borgman.

C-c C-e m org-export-as-freemind

Export as Freemind mind map. For an Org file ‘myfile.org’, the Freemind file
will be ‘myfile.mm’.

http://orgmode.org/worg/org-tutorials/org-taskjuggler.html

Chapter 12: Exporting 155

12.11 XOXO export

Org mode contains an exporter that produces XOXO-style output. Currently, this exporter
only handles the general outline structure and does not interpret any additional Org mode
features.

C-c C-e x org-export-as-xoxo

Export as XOXO file. For an Org file ‘myfile.org’, the XOXO file will be
‘myfile.html’.

C-c C-e v x

Export only the visible part of the document.

12.12 iCalendar export

Some people use Org mode for keeping track of projects, but still prefer a standard calen-
dar application for anniversaries and appointments. In this case it can be useful to show
deadlines and other time-stamped items in Org files in the calendar application. Org mode
can export calendar information in the standard iCalendar format. If you also want to have
TODO entries included in the export, configure the variable org-icalendar-include-

todo. Plain timestamps are exported as VEVENT, and TODO items as VTODO. It will
also create events from deadlines that are in non-TODO items. Deadlines and scheduling
dates in TODO items will be used to set the start and due dates for the TODO entry31. As
categories, it will use the tags locally defined in the heading, and the file/tree category32.
See the variable org-icalendar-alarm-time for a way to assign alarms to entries with a
time.

The iCalendar standard requires each entry to have a globally unique identifier (UID).
Org creates these identifiers during export. If you set the variable org-icalendar-store-
UID, the UID will be stored in the :ID: property of the entry and re-used next time you
report this entry. Since a single entry can give rise to multiple iCalendar entries (as a
timestamp, a deadline, a scheduled item, and as a TODO item), Org adds prefixes to the
UID, depending on what triggered the inclusion of the entry. In this way the UID remains
unique, but a synchronization program can still figure out from which entry all the different
instances originate.

C-c C-e i org-export-icalendar-this-file

Create iCalendar entries for the current file and store them in the same direc-
tory, using a file extension ‘.ics’.

C-c C-e I org-export-icalendar-all-agenda-files

Like C-c C-e i, but do this for all files in org-agenda-files. For each of these
files, a separate iCalendar file will be written.

C-c C-e c org-export-icalendar-combine-agenda-files

Create a single large iCalendar file from all files in org-agenda-files and write
it to the file given by org-combined-agenda-icalendar-file.

31 See the variables org-icalendar-use-deadline and org-icalendar-use-scheduled.
32 To add inherited tags or the TODO state, configure the variable org-icalendar-categories.

Chapter 12: Exporting 156

The export will honor SUMMARY, DESCRIPTION and LOCATION33 properties if the
selected entries have them. If not, the summary will be derived from the headline, and the
description from the body (limited to org-icalendar-include-body characters).

How this calendar is best read and updated, depends on the application you are using.
The FAQ covers this issue.

33 The LOCATION property can be inherited from higher in the hierarchy if you configure org-use-

property-inheritance accordingly.

Chapter 13: Publishing 157

13 Publishing

Org includes a publishing management system that allows you to configure automatic
HTML conversion of projects composed of interlinked org files. You can also configure
Org to automatically upload your exported HTML pages and related attachments, such as
images and source code files, to a web server.

You can also use Org to convert files into PDF, or even combine HTML and PDF
conversion so that files are available in both formats on the server.

Publishing has been contributed to Org by David O’Toole.

13.1 Configuration

Publishing needs significant configuration to specify files, destination and many other prop-
erties of a project.

13.1.1 The variable org-publish-project-alist

Publishing is configured almost entirely through setting the value of one variable, called
org-publish-project-alist. Each element of the list configures one project, and may be
in one of the two following forms:

("project-name" :property value :property value ...)

i.e. a well-formed property list with alternating keys and values
or

("project-name" :components ("project-name" "project-name" ...))

In both cases, projects are configured by specifying property values. A project defines
the set of files that will be published, as well as the publishing configuration to use when
publishing those files. When a project takes the second form listed above, the individual
members of the :components property are taken to be sub-projects, which group together
files requiring different publishing options. When you publish such a “meta-project”, all
the components will also be published, in the sequence given.

13.1.2 Sources and destinations for files

Most properties are optional, but some should always be set. In particular, Org needs to
know where to look for source files, and where to put published files.

:base-directory Directory containing publishing source files
:publishing-directory Directory where output files will be published. You can di-

rectly publish to a webserver using a file name syntax appro-
priate for the Emacs ‘tramp’ package. Or you can publish to a
local directory and use external tools to upload your website
(see Section 13.2 [Uploading files], page 162).

:preparation-function Function or list of functions to be called before starting the
publishing process, for example, to run make for updating files
to be published. The project property list is scoped into this
call as the variable project-plist.

Chapter 13: Publishing 158

:completion-function Function or list of functions called after finishing the publish-
ing process, for example, to change permissions of the result-
ing files. The project property list is scoped into this call as
the variable project-plist.

13.1.3 Selecting files

By default, all files with extension ‘.org’ in the base directory are considered part of the
project. This can be modified by setting the properties

:base-extension Extension (without the dot!) of source files. This actually is a
regular expression. Set this to the symbol any if you want to get
all files in :base-directory, even without extension.

:exclude Regular expression to match file names that should not be pub-
lished, even though they have been selected on the basis of their
extension.

:include List of files to be included regardless of :base-extension and
:exclude.

:recursive Non-nil means, check base-directory recursively for files to publish.

13.1.4 Publishing action

Publishing means that a file is copied to the destination directory and possibly transformed
in the process. The default transformation is to export Org files as HTML files, and this
is done by the function org-publish-org-to-html which calls the HTML exporter (see
Section 12.5 [HTML export], page 129). But you also can publish your content as PDF
files using org-publish-org-to-pdf, or as ascii, latin1 or utf8 encoded files using
the corresponding functions. If you want to publish the Org file itself, but with archived,
commented, and tag-excluded trees removed, use org-publish-org-to-org and set the
parameters :plain-source and/or :htmlized-source. This will produce ‘file.org’ and
‘file.org.html’ in the publishing directory1. Other files like images only need to be copied
to the publishing destination; for this you may use org-publish-attachment. For non-Org
files, you always need to specify the publishing function:

:publishing-function Function executing the publication of a file. This may also be
a list of functions, which will all be called in turn.

:plain-source Non-nil means, publish plain source.
:htmlized-source Non-nil means, publish htmlized source.

The function must accept three arguments: a property list containing at least a
:publishing-directory property, the name of the file to be published, and the path
to the publishing directory of the output file. It should take the specified file, make the
necessary transformation (if any) and place the result into the destination folder.

1 ‘file-source.org’ and ‘file-source.org.html’ if source and publishing directories are equal. Note
that with this kind of setup, you need to add :exclude "-source\\.org" to the project definition in
org-publish-project-alist to prevent the published source files from being considered as new org files
the next time the project is published.

Chapter 13: Publishing 159

13.1.5 Options for the HTML/LATEX exporters

The property list can be used to set many export options for the HTML and LATEX exporters.
In most cases, these properties correspond to user variables in Org. The table below lists
these properties along with the variable they belong to. See the documentation string for
the respective variable for details.

:link-up org-export-html-link-up

:link-home org-export-html-link-home

:language org-export-default-language

:customtime org-display-custom-times

:headline-levels org-export-headline-levels

:section-numbers org-export-with-section-numbers

:section-number-format org-export-section-number-format

:table-of-contents org-export-with-toc

:preserve-breaks org-export-preserve-breaks

:archived-trees org-export-with-archived-trees

:emphasize org-export-with-emphasize

:sub-superscript org-export-with-sub-superscripts

:special-strings org-export-with-special-strings

:footnotes org-export-with-footnotes

:drawers org-export-with-drawers

:tags org-export-with-tags

:todo-keywords org-export-with-todo-keywords

:tasks org-export-with-tasks

:priority org-export-with-priority

:TeX-macros org-export-with-TeX-macros

:LaTeX-fragments org-export-with-LaTeX-fragments

:latex-listings org-export-latex-listings

:skip-before-1st-heading org-export-skip-text-before-1st-heading

:fixed-width org-export-with-fixed-width

:timestamps org-export-with-timestamps

:author user-full-name

:email user-mail-address : addr;addr;..
:author-info org-export-author-info

:email-info org-export-email-info

:creator-info org-export-creator-info

:tables org-export-with-tables

:table-auto-headline org-export-highlight-first-table-line

:style-include-default org-export-html-style-include-default

:style-include-scripts org-export-html-style-include-scripts

:style org-export-html-style

:style-extra org-export-html-style-extra

:convert-org-links org-export-html-link-org-files-as-html

:inline-images org-export-html-inline-images

:html-extension org-export-html-extension

:html-preamble org-export-html-preamble

:html-postamble org-export-html-postamble

Chapter 13: Publishing 160

:xml-declaration org-export-html-xml-declaration

:html-table-tag org-export-html-table-tag

:expand-quoted-html org-export-html-expand

:timestamp org-export-html-with-timestamp

:publishing-directory org-export-publishing-directory

:select-tags org-export-select-tags

:exclude-tags org-export-exclude-tags

:latex-image-options org-export-latex-image-default-option

Most of the org-export-with-* variables have the same effect in both HTML and LATEX
exporters, except for :TeX-macros and :LaTeX-fragments options, respectively nil and t

in the LATEX export. See org-export-plist-vars to check this list of options.

When a property is given a value in org-publish-project-alist, its setting overrides
the value of the corresponding user variable (if any) during publishing. Options set within
a file (see Section 12.2 [Export options], page 126), however, override everything.

13.1.6 Links between published files

To create a link from one Org file to another, you would use something like
‘[[file:foo.org][The foo]]’ or simply ‘file:foo.org.’ (see Chapter 4 [Hyperlinks],
page 34). When published, this link becomes a link to ‘foo.html’. In this way, you can
interlink the pages of your "org web" project and the links will work as expected when you
publish them to HTML. If you also publish the Org source file and want to link to that,
use an http: link instead of a file: link, because file: links are converted to link to the
corresponding ‘html’ file.

You may also link to related files, such as images. Provided you are careful with relative
file names, and provided you have also configured Org to upload the related files, these
links will work too. See Section 13.3.2 [Complex example], page 162, for an example of this
usage.

Sometimes an Org file to be published may contain links that are only valid in your
production environment, but not in the publishing location. In this case, use the property

:link-validation-function Function to validate links

to define a function for checking link validity. This function must accept two arguments,
the file name and a directory relative to which the file name is interpreted in the pro-
duction environment. If this function returns nil, then the HTML generator will only
insert a description into the HTML file, but no link. One option for this function is
org-publish-validate-link which checks if the given file is part of any project in org-

publish-project-alist.

13.1.7 Generating a sitemap

The following properties may be used to control publishing of a map of files for a given
project.

:auto-sitemap When non-nil, publish a sitemap during org-publish-

current-project or org-publish-all.

:sitemap-filename Filename for output of sitemap. Defaults to
‘sitemap.org’ (which becomes ‘sitemap.html’).

Chapter 13: Publishing 161

:sitemap-title Title of sitemap page. Defaults to name of file.

:sitemap-function Plug-in function to use for generation of the sitemap.
Defaults to org-publish-org-sitemap, which generates
a plain list of links to all files in the project.

:sitemap-sort-folders Where folders should appear in the sitemap. Set this to
first (default) or last to display folders first or last,
respectively. Any other value will mix files and folders.

:sitemap-sort-files How the files are sorted in the site map. Set this to
alphabetically (default), chronologically or anti-

chronologically. chronologically sorts the files with
older date first while anti-chronologically sorts the
files with newer date first. alphabetically sorts the
files alphabetically. The date of a file is retrieved with
org-publish-find-date.

:sitemap-ignore-case Should sorting be case-sensitive? Default nil.

:sitemap-file-entry-format With this option one can tell how a sitemap’s entry is
formatted in the sitemap. This is a format string with
some escape sequences: %t stands for the title of the file,
%a stands for the author of the file and %d stands for
the date of the file. The date is retrieved with the org-

publish-find-date function and formatted with org-

publish-sitemap-date-format. Default %t.

:sitemap-date-format Format string for the format-time-string function that
tells how a sitemap entry’s date is to be formatted. This
property bypasses org-publish-sitemap-date-format

which defaults to %Y-%m-%d.

:sitemap-sans-extension When non-nil, remove filenames’ extensions from the
generated sitemap. Useful to have cool URIs (see
http://www.w3.org/Provider/Style/URI). Defaults
to nil.

13.1.8 Generating an index

Org mode can generate an index across the files of a publishing project.

:makeindex When non-nil, generate in index in the file ‘theindex.org’ and
publish it as ‘theindex.html’.

The file will be created when first publishing a project with the :makeindex set. The
file only contains a statement #+include: "theindex.inc". You can then build around
this include statement by adding a title, style information, etc.

http://www.w3.org/Provider/Style/URI

Chapter 13: Publishing 162

13.2 Uploading files

For those people already utilizing third party sync tools such as rsync or unison, it might
be preferable not to use the built in remote publishing facilities of Org mode which rely
heavily on Tramp. Tramp, while very useful and powerful, tends not to be so efficient for
multiple file transfer and has been known to cause problems under heavy usage.

Specialized synchronization utilities offer several advantages. In addition to timestamp
comparison, they also do content and permissions/attribute checks. For this reason you
might prefer to publish your web to a local directory (possibly even in place with your Org
files) and then use ‘unison’ or ‘rsync’ to do the synchronization with the remote host.

Since Unison (for example) can be configured as to which files to transfer to a certain
remote destination, it can greatly simplify the project publishing definition. Simply keep all
files in the correct location, process your Org files with org-publish and let the synchro-
nization tool do the rest. You do not need, in this scenario, to include attachments such as
‘jpg’, ‘css’ or ‘gif’ files in the project definition since the 3rd party tool syncs them.

Publishing to a local directory is also much faster than to a remote one, so that you can
afford more easily to republish entire projects. If you set org-publish-use-timestamps-
flag to nil, you gain the main benefit of re-including any changed external files such as
source example files you might include with #+INCLUDE. The timestamp mechanism in Org
is not smart enough to detect if included files have been modified.

13.3 Sample configuration

Below we provide two example configurations. The first one is a simple project publishing
only a set of Org files. The second example is more complex, with a multi-component
project.

13.3.1 Example: simple publishing configuration

This example publishes a set of Org files to the ‘public_html’ directory on the local ma-
chine.

(setq org-publish-project-alist

'(("org"

:base-directory "~/org/"

:publishing-directory "~/public_html"

:section-numbers nil

:table-of-contents nil

:style "<link rel=\"stylesheet\"

href=\"../other/mystyle.css\"

type=\"text/css\"/>")))

13.3.2 Example: complex publishing configuration

This more complicated example publishes an entire website, including Org files converted
to HTML, image files, Emacs Lisp source code, and style sheets. The publishing directory
is remote and private files are excluded.

To ensure that links are preserved, care should be taken to replicate your directory
structure on the web server, and to use relative file paths. For example, if your Org files

Chapter 13: Publishing 163

are kept in ‘~/org’ and your publishable images in ‘~/images’, you would link to an image
with

file:../images/myimage.png

On the web server, the relative path to the image should be the same. You can accomplish
this by setting up an "images" folder in the right place on the web server, and publishing
images to it.

(setq org-publish-project-alist

'(("orgfiles"

:base-directory "~/org/"

:base-extension "org"

:publishing-directory "/ssh:user@host:~/html/notebook/"

:publishing-function org-publish-org-to-html

:exclude "PrivatePage.org" ;; regexp

:headline-levels 3

:section-numbers nil

:table-of-contents nil

:style "<link rel=\"stylesheet\"

href=\"../other/mystyle.css\" type=\"text/css\"/>"

:html-preamble t)

("images"

:base-directory "~/images/"

:base-extension "jpg\\|gif\\|png"

:publishing-directory "/ssh:user@host:~/html/images/"

:publishing-function org-publish-attachment)

("other"

:base-directory "~/other/"

:base-extension "css\\|el"

:publishing-directory "/ssh:user@host:~/html/other/"

:publishing-function org-publish-attachment)

("website" :components ("orgfiles" "images" "other"))))

13.4 Triggering publication

Once properly configured, Org can publish with the following commands:

C-c C-e X org-publish

Prompt for a specific project and publish all files that belong to it.

C-c C-e P org-publish-current-project

Publish the project containing the current file.

C-c C-e F org-publish-current-file

Publish only the current file.

C-c C-e E org-publish-all

Publish every project.

Chapter 13: Publishing 164

Org uses timestamps to track when a file has changed. The above functions normally
only publish changed files. You can override this and force publishing of all files by giving
a prefix argument to any of the commands above, or by customizing the variable org-

publish-use-timestamps-flag. This may be necessary in particular if files include other
files via #+SETUPFILE: or #+INCLUDE:.

Chapter 14: Working with source code 165

14 Working with source code

Source code can be included in Org mode documents using a ‘src’ block, e.g.

#+BEGIN_SRC emacs-lisp

(defun org-xor (a b)

"Exclusive or."

(if a (not b) b))

#+END_SRC

Org mode provides a number of features for working with live source code, including
editing of code blocks in their native major-mode, evaluation of code blocks, converting
code blocks into source files (known as tangling in literate programming), and exporting
code blocks and their results in several formats. This functionality was contributed by Eric
Schulte and Dan Davison, and was originally named Org-babel.

The following sections describe Org mode’s code block handling facilities.

14.1 Structure of code blocks

Live code blocks can be specified with a ‘src’ block or inline.1 The structure of a ‘src’
block is

#+NAME: <name>

#+BEGIN_SRC <language> <switches> <header arguments>

<body>

#+END_SRC

The #+NAME: line is optional, and can be used to name the code block. Live code
blocks require that a language be specified on the #+BEGIN_SRC line. Switches and header
arguments are optional.

Live code blocks can also be specified inline using

src_<language>{<body>}

or

src_<language>[<header arguments>]{<body>}

<#+NAME: name>

This line associates a name with the code block. This is similar to the
#+TBLNAME: NAME lines that can be used to name tables in Org mode files.
Referencing the name of a code block makes it possible to evaluate the block
from other places in the file, from other files, or from Org mode table formulas
(see Section 3.5 [The spreadsheet], page 23). Names are assumed to be unique
and the behavior of Org mode when two or more blocks share the same name
is undefined.

<language>

The language of the code in the block (see Section 14.7 [Languages], page 169).

1 Note that ‘src’ blocks may be inserted using Org mode’s Section 15.2 [Easy Templates], page 191 system

Chapter 14: Working with source code 166

<switches>

Optional switches control code block export (see the discussion of switches in
Section 11.3 [Literal examples], page 119)

<header arguments>

Optional header arguments control many aspects of evaluation, export and
tangling of code blocks (see Section 14.8 [Header arguments], page 170). Header
arguments can also be set on a per-buffer or per-subtree basis using properties.

source code, header arguments

<body> Source code in the specified language.

14.2 Editing source code

Use C-c ’ to edit the current code block. This brings up a language major-mode edit buffer
containing the body of the code block. Saving this buffer will write the new contents back
to the Org buffer. Use C-c ’ again to exit.

The org-src-mode minor mode will be active in the edit buffer. The following variables
can be used to configure the behavior of the edit buffer. See also the customization group
org-edit-structure for further configuration options.

org-src-lang-modes

If an Emacs major-mode named <lang>-mode exists, where <lang> is the lan-
guage named in the header line of the code block, then the edit buffer will
be placed in that major-mode. This variable can be used to map arbitrary
language names to existing major modes.

org-src-window-setup

Controls the way Emacs windows are rearranged when the edit buffer is created.

org-src-preserve-indentation

This variable is especially useful for tangling languages such as Python, in which
whitespace indentation in the output is critical.

org-src-ask-before-returning-to-edit-buffer

By default, Org will ask before returning to an open edit buffer. Set this variable
to nil to switch without asking.

To turn on native code fontification in the Org buffer, configure the variable org-src-

fontify-natively.

14.3 Exporting code blocks

It is possible to export the code of code blocks, the results of code block evaluation, both
the code and the results of code block evaluation, or none. For most languages, the default
exports code. However, for some languages (e.g. ditaa) the default exports the results of
code block evaluation. For information on exporting code block bodies, see Section 11.3
[Literal examples], page 119.

The :exports header argument can be used to specify export behavior:

Chapter 14: Working with source code 167

Header arguments:

:exports code

The default in most languages. The body of the code block is exported, as
described in Section 11.3 [Literal examples], page 119.

:exports results

The code block will be evaluated and the results will be placed in the Org
mode buffer for export, either updating previous results of the code block lo-
cated anywhere in the buffer or, if no previous results exist, placing the results
immediately after the code block. The body of the code block will not be
exported.

:exports both

Both the code block and its results will be exported.

:exports none

Neither the code block nor its results will be exported.

It is possible to inhibit the evaluation of code blocks during export. Setting the org-

export-babel-evaluate variable to nil will ensure that no code blocks are evaluated as
part of the export process. This can be useful in situations where potentially untrusted Org
mode files are exported in an automated fashion, for example when Org mode is used as
the markup language for a wiki.

14.4 Extracting source code

Creating pure source code files by extracting code from source blocks is referred to as
“tangling”—a term adopted from the literate programming community. During “tangling”
of code blocks their bodies are expanded using org-babel-expand-src-block which can
expand both variable and “noweb” style references (see Section 14.10 [Noweb reference
syntax], page 188).

Header arguments

:tangle no

The default. The code block is not included in the tangled output.

:tangle yes

Include the code block in the tangled output. The output file name is the name
of the org file with the extension ‘.org’ replaced by the extension for the block
language.

:tangle filename

Include the code block in the tangled output to file ‘filename’.

Functions

org-babel-tangle

Tangle the current file. Bound to C-c C-v t.

org-babel-tangle-file

Choose a file to tangle. Bound to C-c C-v f.

Chapter 14: Working with source code 168

Hooks

org-babel-post-tangle-hook

This hook is run from within code files tangled by org-babel-tangle. Example
applications could include post-processing, compilation or evaluation of tangled
code files.

14.5 Evaluating code blocks

Code blocks can be evaluated2 and the results of evaluation optionally placed in the Org
mode buffer. The results of evaluation are placed following a line that begins by default
with #+RESULTS and optionally a cache identifier and/or the name of the evaluated code
block. The default value of #+RESULTS can be changed with the customizable variable
org-babel-results-keyword.

By default, the evaluation facility is only enabled for Lisp code blocks specified as emacs-
lisp. However, source code blocks in many languages can be evaluated within Org mode
(see Section 14.7 [Languages], page 169 for a list of supported languages and Section 14.1
[Structure of code blocks], page 165 for information on the syntax used to define a code
block).

There are a number of ways to evaluate code blocks. The simplest is to press C-c C-c

or C-c C-v e with the point on a code block3. This will call the org-babel-execute-

src-block function to evaluate the block and insert its results into the Org mode buffer.

It is also possible to evaluate named code blocks from anywhere in an Org mode buffer
or an Org mode table. Live code blocks located in the current Org mode buffer or in the
“Library of Babel” (see Section 14.6 [Library of Babel], page 169) can be executed. Named
code blocks can be executed with a separate #+CALL: line or inline within a block of text.

The syntax of the #+CALL: line is

#+CALL: <name>(<arguments>)

#+CALL: <name>[<inside header arguments>](<arguments>) <end header arguments>

The syntax for inline evaluation of named code blocks is

... call_<name>(<arguments>) ...

... call_<name>[<inside header arguments>](<arguments>)[<end header arguments>] ...

<name> The name of the code block to be evaluated (see Section 14.1 [Structure of code
blocks], page 165).

<arguments>

Arguments specified in this section will be passed to the code block. These
arguments use standard function call syntax, rather than header argument syn-
tax. For example, a #+CALL: line that passes the number four to a code block
named double, which declares the header argument :var n=2, would be written
as #+CALL: double(n=4).

2 Whenever code is evaluated there is a potential for that code to do harm. Org mode provides safeguards
to ensure that code is only evaluated after explicit confirmation from the user. For information on these
safeguards (and on how to disable them) see Section 15.4 [Code evaluation security], page 192.

3 The org-babel-no-eval-on-ctrl-c-ctrl-c variable can be used to remove code evaluation from the
C-c C-c key binding.

Chapter 14: Working with source code 169

<inside header arguments>

Inside header arguments are passed through and applied to the named code
block. These arguments use header argument syntax rather than standard
function call syntax. Inside header arguments affect how the code block is eval-
uated. For example, [:results output] will collect the results of everything
printed to STDOUT during execution of the code block.

<end header arguments>

End header arguments are applied to the calling instance and do not affect
evaluation of the named code block. They affect how the results are incorpo-
rated into the Org mode buffer and how the call line is exported. For example,
:results html will insert the results of the call line evaluation in the Org buffer,
wrapped in a BEGIN_HTML: block.

For more examples of passing header arguments to #+CALL: lines see [Header
arguments in function calls], page 172.

14.6 Library of Babel

The “Library of Babel” consists of code blocks that can be called from any Org mode file.
Code blocks defined in the “Library of Babel” can be called remotely as if they were in the
current Org mode buffer (see Section 14.5 [Evaluating code blocks], page 168 for information
on the syntax of remote code block evaluation).

The central repository of code blocks in the “Library of Babel” is housed in an Org mode
file located in the ‘contrib’ directory of Org mode.

Users can add code blocks they believe to be generally useful to their “Library of Babel.”
The code blocks can be stored in any Org mode file and then loaded into the library with
org-babel-lob-ingest.

Code blocks located in any Org mode file can be loaded into the “Library of Babel” with
the org-babel-lob-ingest function, bound to C-c C-v i.

14.7 Languages

Code blocks in the following languages are supported.

Language Identifier Language Identifier
Asymptote asymptote Awk awk
Emacs Calc calc C C
C++ C++ Clojure clojure
CSS css ditaa ditaa
Graphviz dot Emacs Lisp emacs-lisp
gnuplot gnuplot Haskell haskell
Java java
Javascript js LaTeX latex
Ledger ledger Lisp lisp
Lilypond lilypond MATLAB matlab
Mscgen mscgen Objective Caml ocaml
Octave octave Org mode org
Oz oz Perl perl

Chapter 14: Working with source code 170

Plantuml plantuml Python python
R R Ruby ruby
Sass sass Scheme scheme
GNU Screen screen shell sh
SQL sql SQLite sqlite

Language-specific documentation is available for some languages. If available, it can be
found at http://orgmode.org/worg/org-contrib/babel/languages.

The org-babel-load-languages controls which languages are enabled for evaluation
(by default only emacs-lisp is enabled). This variable can be set using the customization
interface or by adding code like the following to your emacs configuration.

The following disables emacs-lisp evaluation and enables evaluation of R code
blocks.

Permission is also granted to copy, distribute and/or modify this document
under the terms of the GNU General Public License (GPL). You should have
received a copy of the GNU General Public License along with GNU Emacs. If
not, see http://www.gnu.org/licenses/.

(org-babel-do-load-languages

'org-babel-load-languages

'((emacs-lisp . nil)

(R . t)))

It is also possible to enable support for a language by loading the related elisp file with
require.

The following adds support for evaluating clojure code blocks.

Permission is also granted to copy, distribute and/or modify this document
under the terms of the GNU General Public License (GPL). You should have
received a copy of the GNU General Public License along with GNU Emacs. If
not, see http://www.gnu.org/licenses/.

(require 'ob-clojure)

14.8 Header arguments

Code block functionality can be configured with header arguments. This section provides
an overview of the use of header arguments, and then describes each header argument in
detail.

14.8.1 Using header arguments

The values of header arguments can be set in six different ways, each more specific (and
having higher priority) than the last.

System-wide header arguments

System-wide values of header arguments can be specified by customizing the org-babel-

default-header-args variable:

:session => "none"

:results => "replace"

:exports => "code"

http://orgmode.org/worg/org-contrib/babel/languages
http://www.gnu.org/licenses/
http://www.gnu.org/licenses/

Chapter 14: Working with source code 171

:cache => "no"

:noweb => "no"

For example, the following example could be used to set the default value of :noweb
header arguments to yes. This would have the effect of expanding :noweb references by
default when evaluating source code blocks.

(setq org-babel-default-header-args

(cons '(:noweb . "yes")

(assq-delete-all :noweb org-babel-default-header-args)))

Language-specific header arguments

Each language can define its own set of default header arguments. See the language-specific
documentation available online at http://orgmode.org/worg/org-contrib/babel.

Buffer-wide header arguments

Buffer-wide header arguments may be specified as properties through the use of
#+PROPERTY: lines placed anywhere in an Org mode file (see Section 7.1 [Property syntax],
page 58).

For example the following would set session to *R*, and results to silent for every
code block in the buffer, ensuring that all execution took place in the same session, and no
results would be inserted into the buffer.

#+PROPERTY: session *R*

#+PROPERTY: results silent

Header arguments in Org mode properties

Header arguments are also read from Org mode properties (see Section 7.1 [Property syntax],
page 58), which can be set on a buffer-wide or per-heading basis. An example of setting a
header argument for all code blocks in a buffer is

#+PROPERTY: tangle yes

When properties are used to set default header arguments, they are looked up with
inheritance, regardless of the value of org-use-property-inheritance. In the following
example the value of the :cache header argument will default to yes in all code blocks in
the subtree rooted at the following heading:

* outline header

:PROPERTIES:

:cache: yes

:END:

Properties defined in this way override the properties set in org-babel-default-

header-args. It is convenient to use the org-set-property function bound to C-c C-x p

to set properties in Org mode documents.

Code block specific header arguments

The most common way to assign values to header arguments is at the code block level.
This can be done by listing a sequence of header arguments and their values as part of

http://orgmode.org/worg/org-contrib/babel

Chapter 14: Working with source code 172

the #+BEGIN_SRC line. Properties set in this way override both the values of org-babel-
default-header-args and header arguments specified as properties. In the following ex-
ample, the :results header argument is set to silent, meaning the results of execution
will not be inserted in the buffer, and the :exports header argument is set to code, meaning
only the body of the code block will be preserved on export to HTML or LATEX.

#+NAME: factorial

#+BEGIN_SRC haskell :results silent :exports code :var n=0

fac 0 = 1

fac n = n * fac (n-1)

#+END_SRC

Similarly, it is possible to set header arguments for inline code blocks

src_haskell[:exports both]{fac 5}

Code block header arguments can span multiple lines using #+HEADER: or #+HEADERS:
lines preceding a code block or nested between the #+NAME: line and the #+BEGIN_SRC line
of a named code block.

Multi-line header arguments on an un-named code block:

#+HEADERS: :var data1=1

#+BEGIN_SRC emacs-lisp :var data2=2

(message "data1:%S, data2:%S" data1 data2)

#+END_SRC

#+results:

: data1:1, data2:2

Multi-line header arguments on a named code block:

#+NAME: named-block

#+HEADER: :var data=2

#+BEGIN_SRC emacs-lisp

(message "data:%S" data)

#+END_SRC

#+results: named-block

: data:2

Header arguments in function calls

At the most specific level, header arguments for “Library of Babel” or #+CALL: lines can be
set as shown in the two examples below. For more information on the structure of #+CALL:
lines see Section 14.5 [Evaluating code blocks], page 168.

The following will apply the :exports results header argument to the evaluation of
the #+CALL: line.

#+CALL: factorial(n=5) :exports results

The following will apply the :session special header argument to the evaluation of
the factorial code block.

#+CALL: factorial[:session special](n=5)

Chapter 14: Working with source code 173

14.8.2 Specific header arguments

Header arguments consist of an initial colon followed by the name of the argument in
lowercase letters. The following header arguments are defined:

Additional header arguments are defined on a language-specific basis, see Section 14.7
[Languages], page 169.

14.8.2.1 :var

The :var header argument is used to pass arguments to code blocks. The specifics of
how arguments are included in a code block vary by language; these are addressed in the
language-specific documentation. However, the syntax used to specify arguments is the
same across all languages. In every case, variables require a default value when they are
declared.

The values passed to arguments can either be literal values, references, or Emacs Lisp
code (see Section 14.8.2.1 [var], page 173). References include anything in the Org mode
file that takes a #+NAME:, #+TBLNAME:, or #+RESULTS: line. This includes tables, lists,
#+BEGIN_EXAMPLE blocks, other code blocks, and the results of other code blocks.

Argument values can be indexed in a manner similar to arrays (see Section 14.8.2.1 [var],
page 173).

The following syntax is used to pass arguments to code blocks using the :var header
argument.

:var name=assign

The argument, assign, can either be a literal value, such as a string ‘"string"’ or a
number ‘9’, or a reference to a table, a list, a literal example, another code block (with or
without arguments), or the results of evaluating another code block.

Here are examples of passing values by reference:

table an Org mode table named with either a #+NAME: or #+TBLNAME: line

#+TBLNAME: example-table

| 1 |

| 2 |

| 3 |

| 4 |

#+NAME: table-length

#+BEGIN_SRC emacs-lisp :var table=example-table

(length table)

#+END_SRC

#+results: table-length

: 4

list a simple list named with a #+NAME: line (note that nesting is not carried through
to the source code block)

#+NAME: example-list

- simple

Chapter 14: Working with source code 174

- not

- nested

- list

#+BEGIN_SRC emacs-lisp :var x=example-list

(print x)

#+END_SRC

#+results:

| simple | list |

code block without arguments
a code block name (from the example above), as assigned by #+NAME:, optionally
followed by parentheses

#+BEGIN_SRC emacs-lisp :var length=table-length()

(* 2 length)

#+END_SRC

#+results:

: 8

code block with arguments
a code block name, as assigned by #+NAME:, followed by parentheses and op-
tional arguments passed within the parentheses following the code block name
using standard function call syntax

#+NAME: double

#+BEGIN_SRC emacs-lisp :var input=8

(* 2 input)

#+END_SRC

#+results: double

: 16

#+NAME: squared

#+BEGIN_SRC emacs-lisp :var input=double(input=1)

(* input input)

#+END_SRC

#+results: squared

: 4

literal example
a literal example block named with a #+NAME: line

#+NAME: literal-example

#+BEGIN_EXAMPLE

A literal example

on two lines

#+END_EXAMPLE

Chapter 14: Working with source code 175

#+NAME: read-literal-example

#+BEGIN_SRC emacs-lisp :var x=literal-example

(concatenate 'string x " for you.")

#+END_SRC

#+results: read-literal-example

: A literal example

: on two lines for you.

Alternate argument syntax

It is also possible to specify arguments in a potentially more natural way using the #+NAME:
line of a code block. As in the following example, arguments can be packed inside of
parentheses, separated by commas, following the source name.

#+NAME: double(input=0, x=2)

#+BEGIN_SRC emacs-lisp

(* 2 (+ input x))

#+END_SRC

Indexable variable values

It is possible to reference portions of variable values by “indexing” into the variables. Indexes
are 0 based with negative values counting back from the end. If an index is separated by
,s then each subsequent section will index into the next deepest nesting or dimension of
the value. Note that this indexing occurs before other table related header arguments like
:hlines, :colnames and :rownames are applied. The following example assigns the last
cell of the first row the table example-table to the variable data:

#+NAME: example-table

| 1 | a |

| 2 | b |

| 3 | c |

| 4 | d |

#+BEGIN_SRC emacs-lisp :var data=example-table[0,-1]

data

#+END_SRC

#+results:

: a

Ranges of variable values can be referenced using two integers separated by a :, in which
case the entire inclusive range is referenced. For example the following assigns the middle
three rows of example-table to data.

#+NAME: example-table

| 1 | a |

| 2 | b |

| 3 | c |

Chapter 14: Working with source code 176

| 4 | d |

| 5 | 3 |

#+BEGIN_SRC emacs-lisp :var data=example-table[1:3]

data

#+END_SRC

#+results:

| 2 | b |

| 3 | c |

| 4 | d |

Additionally, an empty index, or the single character *, are both interpreted to mean
the entire range and as such are equivalent to 0:-1, as shown in the following example in
which the entire first column is referenced.

#+NAME: example-table

| 1 | a |

| 2 | b |

| 3 | c |

| 4 | d |

#+BEGIN_SRC emacs-lisp :var data=example-table[,0]

data

#+END_SRC

#+results:

| 1 | 2 | 3 | 4 |

It is possible to index into the results of code blocks as well as tables. Any number of
dimensions can be indexed. Dimensions are separated from one another by commas, as
shown in the following example.

#+NAME: 3D

#+BEGIN_SRC emacs-lisp

'(((1 2 3) (4 5 6) (7 8 9))

((10 11 12) (13 14 15) (16 17 18))

((19 20 21) (22 23 24) (25 26 27)))

#+END_SRC

#+BEGIN_SRC emacs-lisp :var data=3D[1,,1]

data

#+END_SRC

#+results:

| 11 | 14 | 17 |

Emacs Lisp evaluation of variables

Emacs lisp code can be used to initialize variable values. When a variable value starts with
(, [, ' or ` it will be evaluated as Emacs Lisp and the result of the evaluation will be

Chapter 14: Working with source code 177

assigned as the variable value. The following example demonstrates use of this evaluation
to reliably pass the file-name of the Org mode buffer to a code block—note that evaluation
of header arguments is guaranteed to take place in the original Org mode file, while there
is no such guarantee for evaluation of the code block body.

#+BEGIN_SRC sh :var filename=(buffer-file-name) :exports both

wc -w $filename

#+END_SRC

Note that values read from tables and lists will not be evaluated as Emacs Lisp, as shown
in the following example.

#+NAME: table

| (a b c) |

#+HEADERS: :var data=table[0,0]

#+BEGIN_SRC perl

$data

#+END_SRC

#+results:

: (a b c)

14.8.2.2 :results

There are three classes of :results header argument. Only one option per class may be
supplied per code block.

• collection header arguments specify how the results should be collected from the code
block

• type header arguments specify what type of result the code block will return—which
has implications for how they will be inserted into the Org mode buffer

• handling header arguments specify how the results of evaluating the code block should
be handled.

Collection

The following options are mutually exclusive, and specify how the results should be collected
from the code block.

• value This is the default. The result is the value of the last statement in the code
block. This header argument places the evaluation in functional mode. Note that in
some languages, e.g., Python, use of this result type requires that a return statement
be included in the body of the source code block. E.g., :results value.

• output The result is the collection of everything printed to STDOUT during the execu-
tion of the code block. This header argument places the evaluation in scripting mode.
E.g., :results output.

Type

The following options are mutually exclusive and specify what type of results the code block
will return. By default, results are inserted as either a table or scalar depending on their
value.

Chapter 14: Working with source code 178

• table, vector The results should be interpreted as an Org mode table. If a single
value is returned, it will be converted into a table with one row and one column. E.g.,
:results value table.

• list The results should be interpreted as an Org mode list. If a single scalar value is
returned it will be converted into a list with only one element.

• scalar, verbatim The results should be interpreted literally—they will not be con-
verted into a table. The results will be inserted into the Org mode buffer as quoted
text. E.g., :results value verbatim.

• file The results will be interpreted as the path to a file, and will be inserted into the
Org mode buffer as a file link. E.g., :results value file.

• raw, org The results are interpreted as raw Org mode code and are inserted directly
into the buffer. If the results look like a table they will be aligned as such by Org mode.
E.g., :results value raw.

• html Results are assumed to be HTML and will be enclosed in a begin_html block.
E.g., :results value html.

• latex Results assumed to be LATEX and are enclosed in a begin_latex block. E.g.,
:results value latex.

• code Result are assumed to be parsable code and are enclosed in a code block. E.g.,
:results value code.

• pp The result is converted to pretty-printed code and is enclosed in a code block. This
option currently supports Emacs Lisp, Python, and Ruby. E.g., :results value pp.

• wrap The result is wrapped in a RESULTS drawer. This can be useful for inserting
raw or org syntax results in such a way that their extent is known and they can be
automatically removed or replaced.

Handling

The following results options indicate what happens with the results once they are collected.

• silent The results will be echoed in the minibuffer but will not be inserted into the
Org mode buffer. E.g., :results output silent.

• replace The default value. Any existing results will be removed, and the new re-
sults will be inserted into the Org mode buffer in their place. E.g., :results output

replace.

• append If there are pre-existing results of the code block then the new results will be
appended to the existing results. Otherwise the new results will be inserted as with
replace.

• prepend If there are pre-existing results of the code block then the new results will be
prepended to the existing results. Otherwise the new results will be inserted as with
replace.

14.8.2.3 :file

The header argument :file is used to specify an external file in which to save code block
results. After code block evaluation an Org mode style [[file:]] link (see Section 4.1
[Link format], page 34) to the file will be inserted into the Org mode buffer. Some languages
including R, gnuplot, dot, and ditaa provide special handling of the :file header argument

Chapter 14: Working with source code 179

automatically wrapping the code block body in the boilerplate code required to save output
to the specified file. This is often useful for saving graphical output of a code block to the
specified file.

The argument to :file should be either a string specifying the path to a file, or a list
of two strings in which case the first element of the list should be the path to a file and the
second a description for the link.

14.8.2.4 :dir and remote execution

While the :file header argument can be used to specify the path to the output file,
:dir specifies the default directory during code block execution. If it is absent, then the
directory associated with the current buffer is used. In other words, supplying :dir path

temporarily has the same effect as changing the current directory with M-x cd path, and
then not supplying :dir. Under the surface, :dir simply sets the value of the Emacs
variable default-directory.

When using :dir, you should supply a relative path for file output (e.g. :file

myfile.jpg or :file results/myfile.jpg) in which case that path will be interpreted
relative to the default directory.

In other words, if you want your plot to go into a folder called ‘Work’ in your home
directory, you could use

#+BEGIN_SRC R :file myplot.png :dir ~/Work

matplot(matrix(rnorm(100), 10), type="l")

#+END_SRC

Remote execution

A directory on a remote machine can be specified using tramp file syntax, in which case the
code will be evaluated on the remote machine. An example is

#+BEGIN_SRC R :file plot.png :dir /dand@yakuba.princeton.edu:

plot(1:10, main=system("hostname", intern=TRUE))

#+END_SRC

Text results will be returned to the local Org mode buffer as usual, and file output will
be created on the remote machine with relative paths interpreted relative to the remote
directory. An Org mode link to the remote file will be created.

So, in the above example a plot will be created on the remote machine, and a link of the
following form will be inserted in the org buffer:

[[file:/scp:dand@yakuba.princeton.edu:/home/dand/plot.png][plot.png]]

Most of this functionality follows immediately from the fact that :dir sets the value of
the Emacs variable default-directory, thanks to tramp. Those using XEmacs, or GNU
Emacs prior to version 23 may need to install tramp separately in order for these features
to work correctly.

Further points

• If :dir is used in conjunction with :session, although it will determine the starting
directory for a new session as expected, no attempt is currently made to alter the
directory associated with an existing session.

Chapter 14: Working with source code 180

• :dir should typically not be used to create files during export with :exports results

or :exports both. The reason is that, in order to retain portability of exported mate-
rial between machines, during export links inserted into the buffer will not be expanded
against default directory. Therefore, if default-directory is altered using :dir,
it is probable that the file will be created in a location to which the link does not point.

14.8.2.5 :exports

The :exports header argument specifies what should be included in HTML or LATEX ex-
ports of the Org mode file.

• code The default. The body of code is included into the exported file. E.g., :exports
code.

• results The result of evaluating the code is included in the exported file. E.g.,
:exports results.

• both Both the code and results are included in the exported file. E.g., :exports both.

• none Nothing is included in the exported file. E.g., :exports none.

14.8.2.6 :tangle

The :tangle header argument specifies whether or not the code block should be included
in tangled extraction of source code files.

• tangle The code block is exported to a source code file named after the full path
(including the directory) and file name (w/o extension) of the Org mode file. E.g.,
:tangle yes.

• no The default. The code block is not exported to a source code file. E.g., :tangle
no.

• other Any other string passed to the :tangle header argument is interpreted as a path
(directory and file name relative to the directory of the Org mode file) to which the
block will be exported. E.g., :tangle path.

14.8.2.7 :mkdirp

The :mkdirp header argument can be used to create parent directories of tangled files when
missing. This can be set to yes to enable directory creation or to no to inhibit directory
creation.

14.8.2.8 :comments

By default code blocks are tangled to source-code files without any insertion of comments
beyond those which may already exist in the body of the code block. The :comments header
argument can be set as follows to control the insertion of extra comments into the tangled
code file.

• no The default. No extra comments are inserted during tangling.

• link The code block is wrapped in comments which contain pointers back to the
original Org file from which the code was tangled.

• yes A synonym for “link” to maintain backwards compatibility.

• org Include text from the Org mode file as a comment.

The text is picked from the leading context of the tangled code and is limited by the
nearest headline or source block as the case may be.

Chapter 14: Working with source code 181

• both Turns on both the “link” and “org” comment options.

• noweb Turns on the “link” comment option, and additionally wraps expanded noweb
references in the code block body in link comments.

14.8.2.9 :padline

Control in insertion of padding lines around code block bodies in tangled code files. The
default value is yes which results in insertion of newlines before and after each tangled code
block. The following arguments are accepted.

• yes Insert newlines before and after each code block body in tangled code files.

• no Do not insert any newline padding in tangled output.

14.8.2.10 :no-expand

By default, code blocks are expanded with org-babel-expand-src-block during tangling.
This has the effect of assigning values to variables specified with :var (see Section 14.8.2.1
[var], page 173), and of replacing “noweb” references (see Section 14.10 [Noweb reference
syntax], page 188) with their targets. The :no-expand header argument can be used to
turn off this behavior.

14.8.2.11 :session

The :session header argument starts a session for an interpreted language where state is
preserved.

By default, a session is not started.

A string passed to the :session header argument will give the session a name. This
makes it possible to run concurrent sessions for each interpreted language.

14.8.2.12 :noweb

The :noweb header argument controls expansion of “noweb” style (see Section 14.10 [Noweb
reference syntax], page 188) references in a code block. This header argument can have one
of three values: yes, no, or tangle.

• yes All “noweb” syntax references in the body of the code block will be expanded
before the block is evaluated, tangled or exported.

• no The default. No “noweb” syntax specific action is taken when the code block is
evaluated, tangled or exported.

• tangle All “noweb” syntax references in the body of the code block will be expanded
before the block is tangled, however “noweb” references will not be expanded when the
block is evaluated or exported.

Noweb prefix lines

Noweb insertions are now placed behind the line prefix of the <<reference>>. This be-
havior is illustrated in the following example. Because the <<example>> noweb reference
appears behind the SQL comment syntax, each line of the expanded noweb reference will
be commented.

This code block:

Chapter 14: Working with source code 182

-- <<example>>

expands to:

-- this is the

-- multi-line body of example

Note that noweb replacement text that does not contain any newlines will not be affected
by this change, so it is still possible to use inline noweb references.

14.8.2.13 :noweb-ref

When expanding “noweb” style references the bodies of all code block with either a block
name matching the reference name or a :noweb-ref header argument matching the refer-
ence name will be concatenated together to form the replacement text.

By setting this header argument at the sub-tree or file level, simple code block concate-
nation may be achieved. For example, when tangling the following Org mode file, the bodies
of code blocks will be concatenated into the resulting pure code file4.

#+BEGIN_SRC sh :tangle yes :noweb yes :shebang #!/bin/sh

<<fullest-disk>>

#+END_SRC

* the mount point of the fullest disk

:PROPERTIES:

:noweb-ref: fullest-disk

:END:

** query all mounted disks

#+BEGIN_SRC sh

df \

#+END_SRC

** strip the header row

#+BEGIN_SRC sh

|sed '1d' \

#+END_SRC

** sort by the percent full

#+BEGIN_SRC sh

|awk '{print $5 " " $6}'|sort -n |tail -1 \

#+END_SRC

** extract the mount point

#+BEGIN_SRC sh

|awk '{print $2}'

#+END_SRC

4 (The example needs property inheritance to be turned on for the noweb-ref property, see Section 7.4
[Property inheritance], page 61).

Chapter 14: Working with source code 183

The :noweb-sep (see Section 14.8.2.14 [noweb-sep], page 183) header argument holds
the string used to separate accumulate noweb references like those above. By default a
newline is used.

14.8.2.14 :noweb-sep

The :noweb-sep header argument holds the string used to separate accumulate noweb
references (see Section 14.8.2.13 [noweb-ref], page 182). By default a newline is used.

14.8.2.15 :cache

The :cache header argument controls the use of in-buffer caching of the results of evaluating
code blocks. It can be used to avoid re-evaluating unchanged code blocks. Note that
the :cache header argument will not attempt to cache results when the :session header
argument is used, because the results of the code block execution may be stored in the
session outside of the Org-mode buffer. The :cache header argument can have one of two
values: yes or no.

• no The default. No caching takes place, and the code block will be evaluated every
time it is called.

• yes Every time the code block is run a SHA1 hash of the code and arguments passed to
the block will be generated. This hash is packed into the #+results: line and will be
checked on subsequent executions of the code block. If the code block has not changed
since the last time it was evaluated, it will not be re-evaluated.

Code block caches notice if the value of a variable argument to the code block has
changed. If this is the case, the cache is invalidated and the code block is re-run. In the
following example, caller will not be re-run unless the results of random have changed
since it was last run.

#+NAME: random

#+BEGIN_SRC R :cache yes

runif(1)

#+END_SRC

#+results[a2a72cd647ad44515fab62e144796432793d68e1]: random

0.4659510825295

#+NAME: caller

#+BEGIN_SRC emacs-lisp :var x=random :cache yes

x

#+END_SRC

#+results[bec9c8724e397d5df3b696502df3ed7892fc4f5f]: caller

0.254227238707244

14.8.2.16 :sep

The :sep header argument can be used to control the delimiter used when writing tabular
results out to files external to Org mode. This is used either when opening tabular results
of a code block by calling the org-open-at-point function bound to C-c C-o on the code

Chapter 14: Working with source code 184

block, or when writing code block results to an external file (see Section 14.8.2.3 [file],
page 178) header argument.

By default, when :sep is not specified output tables are tab delimited.

14.8.2.17 :hlines

Tables are frequently represented with one or more horizontal lines, or hlines. The :hlines
argument to a code block accepts the values yes or no, with a default value of no.

• no Strips horizontal lines from the input table. In most languages this is the desired
effect because an hline symbol is interpreted as an unbound variable and raises an
error. Setting :hlines no or relying on the default value yields the following results.

#+TBLNAME: many-cols

| a | b | c |

|---+---+---|

| d | e | f |

|---+---+---|

| g | h | i |

#+NAME: echo-table

#+BEGIN_SRC python :var tab=many-cols

return tab

#+END_SRC

#+results: echo-table

| a | b | c |

| d | e | f |

| g | h | i |

• yes Leaves hlines in the table. Setting :hlines yes has this effect.

#+TBLNAME: many-cols

| a | b | c |

|---+---+---|

| d | e | f |

|---+---+---|

| g | h | i |

#+NAME: echo-table

#+BEGIN_SRC python :var tab=many-cols :hlines yes

return tab

#+END_SRC

#+results: echo-table

| a | b | c |

|---+---+---|

| d | e | f |

|---+---+---|

| g | h | i |

Chapter 14: Working with source code 185

14.8.2.18 :colnames

The :colnames header argument accepts the values yes, no, or nil for unassigned. The
default value is nil. Note that the behavior of the :colnames header argument may
differ across languages. For example Emacs Lisp code blocks ignore the :colnames header
argument entirely given the ease with which tables with column names may be handled
directly in Emacs Lisp.

• nil If an input table looks like it has column names (because its second row is an
hline), then the column names will be removed from the table before processing, then
reapplied to the results.

#+TBLNAME: less-cols

| a |

|---|

| b |

| c |

#+NAME: echo-table-again

#+BEGIN_SRC python :var tab=less-cols

return [[val + '*' for val in row] for row in tab]

#+END_SRC

#+results: echo-table-again

| a |

|----|

| b* |

| c* |

Please note that column names are not removed before the table is indexed using
variable indexing See Section 14.8.2.1 [var], page 173.

• no No column name pre-processing takes place

• yes Column names are removed and reapplied as with nil even if the table does not
“look like” it has column names (i.e. the second row is not an hline)

14.8.2.19 :rownames

The :rownames header argument can take on the values yes or no, with a default value of
no.

• no No row name pre-processing will take place.

• yes The first column of the table is removed from the table before processing, and is
then reapplied to the results.

#+TBLNAME: with-rownames

| one | 1 | 2 | 3 | 4 | 5 |

| two | 6 | 7 | 8 | 9 | 10 |

#+NAME: echo-table-once-again

#+BEGIN_SRC python :var tab=with-rownames :rownames yes

return [[val + 10 for val in row] for row in tab]

#+END_SRC

Chapter 14: Working with source code 186

#+results: echo-table-once-again

| one | 11 | 12 | 13 | 14 | 15 |

| two | 16 | 17 | 18 | 19 | 20 |

Please note that row names are not removed before the table is indexed using variable
indexing See Section 14.8.2.1 [var], page 173.

14.8.2.20 :shebang

Setting the :shebang header argument to a string value (e.g. :shebang "#!/bin/bash")
causes the string to be inserted as the first line of any tangled file holding the code block,
and the file permissions of the tangled file are set to make it executable.

14.8.2.21 :eval

The :eval header argument can be used to limit the evaluation of specific code blocks. The
:eval header argument can be useful for protecting against the evaluation of dangerous
code blocks or to ensure that evaluation will require a query regardless of the value of the
org-confirm-babel-evaluate variable. The possible values of :eval and their effects are
shown below.

never or no

The code block will not be evaluated under any circumstances.

query Evaluation of the code block will require a query.

never-export or no-export

The code block will not be evaluated during export but may still be called
interactively.

query-export

Evaluation of the code block during export will require a query.

If this header argument is not set then evaluation is determined by the value of the org-
confirm-babel-evaluate variable see Section 15.4 [Code evaluation security], page 192.

14.9 Results of evaluation

The way in which results are handled depends on whether a session is invoked, as well as on
whether :results value or :results output is used. The following table shows the table
possibilities. For a full listing of the possible results header arguments see Section 14.8.2.2
[results], page 177.

Non-session Session
:results value value of last expression value of last expression
:results output contents of STDOUT concatenation of interpreter output

Note: With :results value, the result in both :session and non-session is returned
to Org mode as a table (a one- or two-dimensional vector of strings or numbers) when
appropriate.

14.9.1 Non-session

Chapter 14: Working with source code 187

14.9.1.1 :results value

This is the default. Internally, the value is obtained by wrapping the code in a function
definition in the external language, and evaluating that function. Therefore, code should
be written as if it were the body of such a function. In particular, note that Python does
not automatically return a value from a function unless a return statement is present, and
so a ‘return’ statement will usually be required in Python.

This is the only one of the four evaluation contexts in which the code is automatically
wrapped in a function definition.

14.9.1.2 :results output

The code is passed to the interpreter as an external process, and the contents of the standard
output stream are returned as text. (In certain languages this also contains the error output
stream; this is an area for future work.)

14.9.2 Session

14.9.2.1 :results value

The code is passed to an interpreter running as an interactive Emacs inferior process. Only
languages which provide tools for interactive evaluation of code have session support, so
some language (e.g., C and ditaa) do not support the :session header argument, and in
other languages (e.g., Python and Haskell) which have limitations on the code which may
be entered into interactive sessions, those limitations apply to the code in code blocks using
the :session header argument as well.

Unless the :results output option is supplied (see below) the result returned is
the result of the last evaluation performed by the interpreter. (This is obtained in a
language-specific manner: the value of the variable _ in Python and Ruby, and the value
of .Last.value in R).

14.9.2.2 :results output

The code is passed to the interpreter running as an interactive Emacs inferior process. The
result returned is the concatenation of the sequence of (text) output from the interactive
interpreter. Notice that this is not necessarily the same as what would be sent to STDOUT if
the same code were passed to a non-interactive interpreter running as an external process.
For example, compare the following two blocks:

#+BEGIN_SRC python :results output

print "hello"

2

print "bye"

#+END_SRC

#+results:

: hello

: bye

In non-session mode, the ‘2’ is not printed and does not appear.

#+BEGIN_SRC python :results output :session

Chapter 14: Working with source code 188

print "hello"

2

print "bye"

#+END_SRC

#+results:

: hello

: 2

: bye

But in :session mode, the interactive interpreter receives input ‘2’ and prints out its
value, ‘2’. (Indeed, the other print statements are unnecessary here).

14.10 Noweb reference syntax

The “noweb” (see http://www.cs.tufts.edu/~nr/noweb/) Literate Programming system
allows named blocks of code to be referenced by using the familiar Noweb syntax:

<<code-block-name>>

When a code block is tangled or evaluated, whether or not “noweb” references are
expanded depends upon the value of the :noweb header argument. If :noweb yes, then a
Noweb reference is expanded before evaluation. If :noweb no, the default, then the reference
is not expanded before evaluation. See the Section 14.8.2.13 [noweb-ref], page 182 header
argument for a more flexible way to resolve noweb references.

It is possible to include the results of a code block rather than the body. This is done
by appending parenthesis to the code block name which may optionally contain arguments
to the code block as shown below.

<<code-block-name(optional arguments)>>

Note: the default value, :noweb no, was chosen to ensure that correct code is not broken
in a language, such as Ruby, where <<arg>> is a syntactically valid construct. If <<arg>>
is not syntactically valid in languages that you use, then please consider setting the default
value.

Note: if noweb tangling is slow in large Org-mode files consider setting the *org-babel-
use-quick-and-dirty-noweb-expansion* variable to true. This will result in faster noweb
reference resolution at the expense of not correctly resolving inherited values of the :noweb-
ref header argument.

14.11 Key bindings and useful functions

Many common Org mode key sequences are re-bound depending on the context.

Within a code block, the following key bindings are active:

C-c C-c org-babel-execute-src-block

C-c C-o org-babel-open-src-block-result

C-UP org-babel-load-in-session

M-DOWN org-babel-pop-to-session

In an Org mode buffer, the following key bindings are active:

http://www.cs.tufts.edu/~nr/noweb/

Chapter 14: Working with source code 189

C-c C-v p or C-c C-v C-p org-babel-previous-src-block

C-c C-v n or C-c C-v C-n org-babel-next-src-block

C-c C-v e or C-c C-v C-e org-babel-execute-maybe

C-c C-v o or C-c C-v C-o org-babel-open-src-block-result

C-c C-v v or C-c C-v C-v org-babel-expand-src-block

C-c C-v u or C-c C-v C-u org-babel-goto-src-block-head

C-c C-v g or C-c C-v C-g org-babel-goto-named-src-block

C-c C-v r or C-c C-v C-r org-babel-goto-named-result

C-c C-v b or C-c C-v C-b org-babel-execute-buffer

C-c C-v s or C-c C-v C-s org-babel-execute-subtree

C-c C-v d or C-c C-v C-d org-babel-demarcate-block

C-c C-v t or C-c C-v C-t org-babel-tangle

C-c C-v f or C-c C-v C-f org-babel-tangle-file

C-c C-v c or C-c C-v C-c org-babel-check-src-block

C-c C-v j or C-c C-v C-j org-babel-insert-header-arg

C-c C-v l or C-c C-v C-l org-babel-load-in-session

C-c C-v i or C-c C-v C-i org-babel-lob-ingest

C-c C-v I or C-c C-v C-I org-babel-view-src-block-info

C-c C-v z or C-c C-v C-z org-babel-switch-to-session-with-code

C-c C-v a or C-c C-v C-a org-babel-sha1-hash

C-c C-v h or C-c C-v C-h org-babel-describe-bindings

C-c C-v x or C-c C-v C-x org-babel-do-key-sequence-in-edit-

buffer

14.12 Batch execution

It is possible to call functions from the command line. This shell script calls org-babel-
tangle on every one of its arguments.

Be sure to adjust the paths to fit your system.

#!/bin/sh

-*- mode: shell-script -*-

#

tangle files with org-mode

#

DIR=`pwd`

FILES=""

ORGINSTALL="~/src/org/lisp/org-install.el"

wrap each argument in the code required to call tangle on it

for i in $@; do

FILES="$FILES \"$i\""

done

emacs -Q --batch -l $ORGINSTALL \

--eval "(progn

(add-to-list 'load-path (expand-file-name \"~/src/org/lisp/\"))

Chapter 14: Working with source code 190

(add-to-list 'load-path (expand-file-name \"~/src/org/contrib/lisp/\"))

(require 'org)(require 'org-exp)(require 'ob)(require 'ob-tangle)

(mapc (lambda (file)

(find-file (expand-file-name file \"$DIR\"))

(org-babel-tangle)

(kill-buffer)) '($FILES)))" 2>&1 |grep tangled

Chapter 15: Miscellaneous 191

15 Miscellaneous

15.1 Completion

Emacs would not be Emacs without completion, and Org mode uses it whenever it makes
sense. If you prefer an iswitchb- or ido-like interface for some of the completion prompts,
you can specify your preference by setting at most one of the variables org-completion-
use-iswitchb org-completion-use-ido.

Org supports in-buffer completion. This type of completion does not make use of the
minibuffer. You simply type a few letters into the buffer and use the key to complete text
right there.

M-TAB Complete word at point

• At the beginning of a headline, complete TODO keywords.

• After ‘\’, complete TEX symbols supported by the exporter.

• After ‘*’, complete headlines in the current buffer so that they can be used
in search links like ‘[[*find this headline]]’.

• After ‘:’ in a headline, complete tags. The list of tags is taken from the
variable org-tag-alist (possibly set through the ‘#+TAGS’ in-buffer op-
tion, see Section 6.2 [Setting tags], page 54), or it is created dynamically
from all tags used in the current buffer.

• After ‘:’ and not in a headline, complete property keys. The list of keys is
constructed dynamically from all keys used in the current buffer.

• After ‘[’, complete link abbreviations (see Section 4.6 [Link abbreviations],
page 39).

• After ‘#+’, complete the special keywords like ‘TYP_TODO’ or ‘OPTIONS’
which set file-specific options for Org mode. When the option keyword
is already complete, pressing M-TAB again will insert example settings for
this keyword.

• In the line after ‘#+STARTUP: ’, complete startup keywords, i.e. valid keys
for this line.

• Elsewhere, complete dictionary words using Ispell.

15.2 Easy Templates

Org mode supports insertion of empty structural elements (like #+BEGIN_SRC and #+END_

SRC pairs) with just a few key strokes. This is achieved through a native template expansion
mechanism. Note that Emacs has several other template mechanisms which could be used
in a similar way, for example ‘yasnippet’.

To insert a structural element, type a ‘<’, followed by a template selector and TAB.
Completion takes effect only when the above keystrokes are typed on a line by itself.

The following template selectors are currently supported.

s #+begin_src ... #+end_src

e #+begin_example ... #+end_example

Chapter 15: Miscellaneous 192

q #+begin_quote ... #+end_quote

v #+begin_verse ... #+end_verse

c #+begin_center ... #+end_center

l #+begin_latex ... #+end_latex

L #+latex:

h #+begin_html ... #+end_html

H #+html:

a #+begin_ascii ... #+end_ascii

A #+ascii:

i #+index: line
I #+include: line

For example, on an empty line, typing "<e" and then pressing TAB, will expand into a
complete EXAMPLE template.

You can install additional templates by customizing the variable org-structure-

template-alist. See the docstring of the variable for additional details.

15.3 Speed keys

Single keys can be made to execute commands when the cursor is at the beginning of
a headline, i.e. before the first star. Configure the variable org-use-speed-commands to
activate this feature. There is a pre-defined list of commands, and you can add more such
commands using the variable org-speed-commands-user. Speed keys do not only speed
up navigation and other commands, but they also provide an alternative way to execute
commands bound to keys that are not or not easily available on a TTY, or on a small mobile
device with a limited keyboard.

To see which commands are available, activate the feature and press ? with the cursor
at the beginning of a headline.

15.4 Code evaluation and security issues

Org provides tools to work with the code snippets, including evaluating them.

Running code on your machine always comes with a security risk. Badly written or
malicious code can be executed on purpose or by accident. Org has default settings which
will only evaluate such code if you give explicit permission to do so, and as a casual user of
these features you should leave these precautions intact.

For people who regularly work with such code, the confirmation prompts can become
annoying, and you might want to turn them off. This can be done, but you must be aware
of the risks that are involved.

Code evaluation can happen under the following circumstances:

Source code blocks
Source code blocks can be evaluated during export, or when pressing C-c C-c

in the block. The most important thing to realize here is that Org mode files
which contain code snippets are, in a certain sense, like executable files. So you
should accept them and load them into Emacs only from trusted sources—just
like you would do with a program you install on your computer.

Chapter 15: Miscellaneous 193

Make sure you know what you are doing before customizing the variables which
take off the default security brakes.

[User Option]org-confirm-babel-evaluate
When t (the default), the user is asked before every code block evaluation.
When nil, the user is not asked. When set to a function, it is called with
two arguments (language and body of the code block) and should return
t to ask and nil not to ask.

For example, here is how to execute "ditaa" code (which is considered safe)
without asking:

(defun my-org-confirm-babel-evaluate (lang body)

(not (string= lang "ditaa"))) ; don't ask for ditaa

(setq org-confirm-babel-evaluate 'my-org-confirm-babel-evaluate)

Following shell and elisp links
Org has two link types that can directly evaluate code (see Section 4.3 [Exter-
nal links], page 35). These links can be problematic because the code to be
evaluated is not visible.

[User Option]org-confirm-shell-link-function
Function to queries user about shell link execution.

[User Option]org-confirm-elisp-link-function
Functions to query user for Emacs Lisp link execution.

Formulas in tables
Formulas in tables (see Section 3.5 [The spreadsheet], page 23) are code that is
evaluated either by the calc interpreter, or by the Emacs Lisp interpreter.

15.5 Customization

There are more than 180 variables that can be used to customize Org. For the sake of
compactness of the manual, I am not describing the variables here. A structured overview
of customization variables is available with M-x org-customize. Or select Browse Org

Group from the Org->Customization menu. Many settings can also be activated on a
per-file basis, by putting special lines into the buffer (see Section 15.6 [In-buffer settings],
page 193).

15.6 Summary of in-buffer settings

Org mode uses special lines in the buffer to define settings on a per-file basis. These lines
start with a ‘#+’ followed by a keyword, a colon, and then individual words defining a setting.
Several setting words can be in the same line, but you can also have multiple lines for the
keyword. While these settings are described throughout the manual, here is a summary.
After changing any of those lines in the buffer, press C-c C-c with the cursor still in the
line to activate the changes immediately. Otherwise they become effective only when the
file is visited again in a new Emacs session.

Chapter 15: Miscellaneous 194

#+ARCHIVE: %s_done::

This line sets the archive location for the agenda file. It applies for all sub-
sequent lines until the next ‘#+ARCHIVE’ line, or the end of the file. The first
such line also applies to any entries before it. The corresponding variable is
org-archive-location.

#+CATEGORY:

This line sets the category for the agenda file. The category applies for all
subsequent lines until the next ‘#+CATEGORY’ line, or the end of the file. The
first such line also applies to any entries before it.

#+COLUMNS: %25ITEM

Set the default format for columns view. This format applies when columns
view is invoked in locations where no COLUMNS property applies.

#+CONSTANTS: name1=value1 ...

Set file-local values for constants to be used in table formulas. This line sets
the local variable org-table-formula-constants-local. The global version
of this variable is org-table-formula-constants.

#+FILETAGS: :tag1:tag2:tag3:

Set tags that can be inherited by any entry in the file, including the top-level
entries.

#+DRAWERS: NAME1

Set the file-local set of drawers. The corresponding global variable is org-

drawers.

#+LINK: linkword replace

These lines (several are allowed) specify link abbreviations. See Section 4.6
[Link abbreviations], page 39. The corresponding variable is org-link-abbrev-
alist.

#+PRIORITIES: highest lowest default

This line sets the limits and the default for the priorities. All three must be
either letters A-Z or numbers 0-9. The highest priority must have a lower ASCII
number than the lowest priority.

#+PROPERTY: Property_Name Value

This line sets a default inheritance value for entries in the current buffer, most
useful for specifying the allowed values of a property.

#+SETUPFILE: file

This line defines a file that holds more in-buffer setup. Normally this is entirely
ignored. Only when the buffer is parsed for option-setting lines (i.e. when
starting Org mode for a file, when pressing C-c C-c in a settings line, or when
exporting), then the contents of this file are parsed as if they had been included
in the buffer. In particular, the file can be any other Org mode file with internal
setup. You can visit the file the cursor is in the line with C-c ’.

#+STARTUP:

This line sets options to be used at startup of Org mode, when an Org file is
being visited.

Chapter 15: Miscellaneous 195

The first set of options deals with the initial visibility of the outline tree. The
corresponding variable for global default settings is org-startup-folded, with
a default value t, which means overview.

overview top-level headlines only
content all headlines
showall no folding of any entries
showeverything show even drawer contents

Dynamic virtual indentation is controlled by the variable org-startup-

indented1

indent start with org-indent-mode turned on
noindent start with org-indent-mode turned off

Then there are options for aligning tables upon visiting a file. This is useful
in files containing narrowed table columns. The corresponding variable is org-
startup-align-all-tables, with a default value nil.

align align all tables
noalign donflt align tables on startup

When visiting a file, inline images can be automatically displayed. The corre-
sponding variable is org-startup-with-inline-images, with a default value
nil to avoid delays when visiting a file.

inlineimages show inline images
noinlineimages donflt show inline images on startup

Logging the closing and reopening of TODO items and clock intervals can be
configured using these options (see variables org-log-done, org-log-note-
clock-out and org-log-repeat)

logdone record a timestamp when an item is marked DONE
lognotedone record timestamp and a note when DONE
nologdone donflt record when items are marked DONE
logrepeat record a time when reinstating a repeating item
lognoterepeat record a note when reinstating a repeating item
nologrepeat do not record when reinstating repeating item
lognoteclock-out record a note when clocking out
nolognoteclock-out donflt record a note when clocking out
logreschedule record a timestamp when scheduling time changes
lognotereschedule record a note when scheduling time changes
nologreschedule do not record when a scheduling date changes
logredeadline record a timestamp when deadline changes
lognoteredeadline record a note when deadline changes
nologredeadline do not record when a deadline date changes
logrefile record a timestamp when refiling
lognoterefile record a note when refiling
nologrefile do not record when refiling

Here are the options for hiding leading stars in outline headings, and for indent-
ing outlines. The corresponding variables are org-hide-leading-stars and

1 Emacs 23 and Org mode 6.29 are required

Chapter 15: Miscellaneous 196

org-odd-levels-only, both with a default setting nil (meaning showstars

and oddeven).

hidestars make all but one of the stars starting a headline invisible.
showstars show all stars starting a headline
indent virtual indentation according to outline level
noindent no virtual indentation according to outline level
odd allow only odd outline levels (1,3,...)
oddeven allow all outline levels

To turn on custom format overlays over timestamps (variables org-put-time-
stamp-overlays and org-time-stamp-overlay-formats), use

customtime overlay custom time format

The following options influence the table spreadsheet (variable constants-

unit-system).

constcgs ‘constants.el’ should use the c-g-s unit system
constSI ‘constants.el’ should use the SI unit system

To influence footnote settings, use the following keywords. The corresponding
variables are org-footnote-define-inline, org-footnote-auto-label, and
org-footnote-auto-adjust.

fninline define footnotes inline
fnnoinline define footnotes in separate section
fnlocal define footnotes near first reference, but not inline
fnprompt prompt for footnote labels
fnauto create [fn:1]-like labels automatically (default)
fnconfirm offer automatic label for editing or confirmation
fnplain create [1]-like labels automatically
fnadjust automatically renumber and sort footnotes
nofnadjust do not renumber and sort automatically

To hide blocks on startup, use these keywords. The corresponding variable is
org-hide-block-startup.

hideblocks Hide all begin/end blocks on startup
nohideblocks Do not hide blocks on startup

The display of entities as UTF-8 characters is governed by the variable org-

pretty-entities and the keywords

entitiespretty Show entities as UTF-8 characters where possible
entitiesplain Leave entities plain

#+TAGS: TAG1(c1) TAG2(c2)

These lines (several such lines are allowed) specify the valid tags in this file,
and (potentially) the corresponding fast tag selection keys. The corresponding
variable is org-tag-alist.

#+TBLFM: This line contains the formulas for the table directly above the line.

Chapter 15: Miscellaneous 197

#+TITLE:, #+AUTHOR:, #+EMAIL:, #+LANGUAGE:, #+TEXT:, #+DATE:,

#+OPTIONS:, #+BIND:, #+XSLT:,

#+DESCRIPTION:, #+KEYWORDS:,

#+LATEX_HEADER:, #+STYLE:, #+LINK_UP:, #+LINK_HOME:,

#+EXPORT_SELECT_TAGS:, #+EXPORT_EXCLUDE_TAGS:

These lines provide settings for exporting files. For more details see Section 12.2
[Export options], page 126.

#+TODO: #+SEQ_TODO: #+TYP_TODO:

These lines set the TODO keywords and their interpretation in the current file.
The corresponding variable is org-todo-keywords.

15.7 The very busy C-c C-c key

The key C-c C-c has many purposes in Org, which are all mentioned scattered throughout
this manual. One specific function of this key is to add tags to a headline (see Chapter 6
[Tags], page 54). In many other circumstances it means something like “Hey Org, look here
and update according to what you see here”. Here is a summary of what this means in
different contexts.

− If there are highlights in the buffer from the creation of a sparse tree, or from clock
display, remove these highlights.

− If the cursor is in one of the special #+KEYWORD lines, this triggers scanning the buffer
for these lines and updating the information.

− If the cursor is inside a table, realign the table. This command works even if the
automatic table editor has been turned off.

− If the cursor is on a #+TBLFM line, re-apply the formulas to the entire table.

− If the current buffer is a capture buffer, close the note and file it. With a prefix
argument, file it, without further interaction, to the default location.

− If the cursor is on a <<<target>>>, update radio targets and corresponding links in
this buffer.

− If the cursor is in a property line or at the start or end of a property drawer, offer
property commands.

− If the cursor is at a footnote reference, go to the corresponding definition, and vice
versa.

− If the cursor is on a statistics cookie, update it.

− If the cursor is in a plain list item with a checkbox, toggle the status of the checkbox.

− If the cursor is on a numbered item in a plain list, renumber the ordered list.

− If the cursor is on the #+BEGIN line of a dynamic block, the block is updated.

− If the cursor is at a timestamp, fix the day name in the timestamp.

15.8 A cleaner outline view

Some people find it noisy and distracting that the Org headlines start with a potentially
large number of stars, and that text below the headlines is not indented. While this is no
problem when writing a book-like document where the outline headings are really section
headings, in a more list-oriented outline, indented structure is a lot cleaner:

Chapter 15: Miscellaneous 198

* Top level headline | * Top level headline

** Second level | * Second level

*** 3rd level | * 3rd level

some text | some text

*** 3rd level | * 3rd level

more text | more text

* Another top level headline | * Another top level headline

If you are using at least Emacs 23.22 and version 6.29 of Org, this kind of view can be
achieved dynamically at display time using org-indent-mode. In this minor mode, all lines
are prefixed for display with the necessary amount of space3. Also headlines are prefixed
with additional stars, so that the amount of indentation shifts by two4 spaces per level.
All headline stars but the last one are made invisible using the org-hide face5 - see below
under ‘2.’ for more information on how this works. You can turn on org-indent-mode

for all files by customizing the variable org-startup-indented, or you can turn it on for
individual files using

#+STARTUP: indent

If you want a similar effect in an earlier version of Emacs and/or Org, or if you want
the indentation to be hard space characters so that the plain text file looks as similar as
possible to the Emacs display, Org supports you in the following way:

1. Indentation of text below headlines
You may indent text below each headline to make the left boundary line up with the
headline, like

*** 3rd level

more text, now indented

Org supports this with paragraph filling, line wrapping, and structure editing6, pre-
serving or adapting the indentation as appropriate.

2. Hiding leading stars
You can modify the display in such a way that all leading stars become invisible. To
do this in a global way, configure the variable org-hide-leading-stars or change this
on a per-file basis with

#+STARTUP: hidestars

#+STARTUP: showstars

With hidden stars, the tree becomes:

* Top level headline

* Second level

* 3rd level

...

2 Emacs 23.1 can actually crash with org-indent-mode
3 org-indent-mode also sets the wrap-prefix property, such that visual-line-mode (or purely setting
word-wrap) wraps long lines (including headlines) correctly indented.

4 See the variable org-indent-indentation-per-level.
5 Turning on org-indent-mode sets org-hide-leading-stars to t and org-adapt-indentation to nil.
6 See also the variable org-adapt-indentation.

Chapter 15: Miscellaneous 199

The leading stars are not truly replaced by whitespace, they are only fontified with the
face org-hide that uses the background color as font color. If you are not using either
white or black background, you may have to customize this face to get the wanted effect.
Another possibility is to set this font such that the extra stars are almost invisible, for
example using the color grey90 on a white background.

3. Things become cleaner still if you skip all the even levels and use only odd levels 1, 3,
5..., effectively adding two stars to go from one outline level to the next7. In this way
we get the outline view shown at the beginning of this section. In order to make the
structure editing and export commands handle this convention correctly, configure the
variable org-odd-levels-only, or set this on a per-file basis with one of the following
lines:

#+STARTUP: odd

#+STARTUP: oddeven

You can convert an Org file from single-star-per-level to the double-star-per-level con-
vention with M-x org-convert-to-odd-levels RET in that file. The reverse operation
is M-x org-convert-to-oddeven-levels.

15.9 Using Org on a tty

Because Org contains a large number of commands, by default many of Org’s core commands
are bound to keys that are generally not accessible on a tty, such as the cursor keys (LEFT,
RIGHT, UP, DOWN), TAB and RET, in particular when used together with modifiers
like META and/or SHIFT. To access these commands on a tty when special keys are
unavailable, the following alternative bindings can be used. The tty bindings below will
likely be more cumbersome; you may find for some of the bindings below that a customized
workaround suits you better. For example, changing a timestamp is really only fun with
S-CURSOR keys, whereas on a tty you would rather use C-c . to re-insert the timestamp.

Default Alternative 1 Speed
key

Alternative 2

S-TAB C-u TAB C

M-LEFT C-c C-x l l ESC LEFT

M-S-LEFT C-c C-x L L

M-RIGHT C-c C-x r r ESC RIGHT

M-S-RIGHT C-c C-x R R

M-UP C-c C-x u ESC UP

M-S-UP C-c C-x U U

M-DOWN C-c C-x d ESC DOWN

M-S-DOWN C-c C-x D D

S-RET C-c C-x c

M-RET C-c C-x m ESC RET

M-S-RET C-c C-x M

S-LEFT C-c LEFT

S-RIGHT C-c RIGHT

S-UP C-c UP

7 When you need to specify a level for a property search or refile targets, ‘LEVEL=2’ will correspond to 3
stars, etc.

Chapter 15: Miscellaneous 200

S-DOWN C-c DOWN

C-S-LEFT C-c C-x LEFT

C-S-RIGHT C-c C-x RIGHT

15.10 Interaction with other packages

Org lives in the world of GNU Emacs and interacts in various ways with other code out
there.

15.10.1 Packages that Org cooperates with

‘calc.el’ by Dave Gillespie
Org uses the Calc package for implementing spreadsheet functionality in its
tables (see Section 3.5 [The spreadsheet], page 23). Org checks for the avail-
ability of Calc by looking for the function calc-eval which will have been
autoloaded during setup if Calc has been installed properly. As of Emacs 22,
Calc is part of the Emacs distribution. Another possibility for interaction be-
tween the two packages is using Calc for embedded calculations. See Section
“Embedded Mode” in GNU Emacs Calc Manual.

‘constants.el’ by Carsten Dominik
In a table formula (see Section 3.5 [The spreadsheet], page 23), it is possible
to use names for natural constants or units. Instead of defining your own con-
stants in the variable org-table-formula-constants, install the ‘constants’
package which defines a large number of constants and units, and lets you use
unit prefixes like ‘M’ for ‘Mega’, etc. You will need version 2.0 of this package,
available at http://www.astro.uva.nl/~dominik/Tools. Org checks for the
function constants-get, which has to be autoloaded in your setup. See the
installation instructions in the file ‘constants.el’.

‘cdlatex.el’ by Carsten Dominik
Org mode can make use of the CDLATEX package to efficiently enter LATEX
fragments into Org files. See Section 11.7.5 [CDLaTeX mode], page 125.

‘imenu.el’ by Ake Stenhoff and Lars Lindberg
Imenu allows menu access to an index of items in a file. Org mode supports
Imenu—all you need to do to get the index is the following:

(add-hook 'org-mode-hook

(lambda () (imenu-add-to-menubar "Imenu")))

By default the index is two levels deep—you can modify the depth using the
option org-imenu-depth.

‘remember.el’ by John Wiegley
Org used to use this package for capture, but no longer does.

‘speedbar.el’ by Eric M. Ludlam
Speedbar is a package that creates a special frame displaying files and index
items in files. Org mode supports Speedbar and allows you to drill into Org files
directly from the Speedbar. It also allows you to restrict the scope of agenda
commands to a file or a subtree by using the command < in the Speedbar frame.

http://www.astro.uva.nl/~dominik/Tools

Chapter 15: Miscellaneous 201

‘table.el’ by Takaaki Ota
Complex ASCII tables with automatic line wrapping, column- and
row-spanning, and alignment can be created using the Emacs table package
by Takaaki Ota (http://sourceforge.net/projects/table, and also part
of Emacs 22). Org mode will recognize these tables and export them properly.
Because of interference with other Org mode functionality, you unfortunately
cannot edit these tables directly in the buffer. Instead, you need to use the
command C-c ’ to edit them, similar to source code snippets.

C-c ’ org-edit-special

Edit a ‘table.el’ table. Works when the cursor is in a table.el
table.

C-c ~ org-table-create-with-table.el

Insert a ‘table.el’ table. If there is already a table at point, this
command converts it between the ‘table.el’ format and the Org
mode format. See the documentation string of the command org-

convert-table for the restrictions under which this is possible.

‘table.el’ is part of Emacs since Emacs 22.

‘footnote.el’ by Steven L. Baur
Org mode recognizes numerical footnotes as provided by this package. How-
ever, Org mode also has its own footnote support (see Section 2.10 [Footnotes],
page 15), which makes using ‘footnote.el’ unnecessary.

15.10.2 Packages that lead to conflicts with Org mode

In Emacs 23, shift-selection-mode is on by default, meaning that cursor
motions combined with the shift key should start or enlarge regions. This con-
flicts with the use of S-CURSOR commands in Org to change timestamps, TODO
keywords, priorities, and item bullet types if the cursor is at such a location. By
default, S-CURSOR commands outside special contexts don’t do anything, but
you can customize the variable org-support-shift-select. Org mode then
tries to accommodate shift selection by (i) using it outside of the special con-
texts where special commands apply, and by (ii) extending an existing active
region even if the cursor moves across a special context.

‘CUA.el’ by Kim. F. Storm
Key bindings in Org conflict with the S-<cursor> keys used by CUA mode (as
well as pc-select-mode and s-region-mode) to select and extend the region.
In fact, Emacs 23 has this built-in in the form of shift-selection-mode, see
previous paragraph. If you are using Emacs 23, you probably don’t want to
use another package for this purpose. However, if you prefer to leave these keys
to a different package while working in Org mode, configure the variable org-

replace-disputed-keys. When set, Org will move the following key bindings
in Org files, and in the agenda buffer (but not during date selection).

S-UP ⇒ M-p S-DOWN ⇒ M-n

S-LEFT ⇒ M-- S-RIGHT ⇒ M-+

C-S-LEFT ⇒ M-S-- C-S-RIGHT ⇒ M-S-+

http://sourceforge.net/projects/table

Chapter 15: Miscellaneous 202

Yes, these are unfortunately more difficult to remember. If you want to have
other replacement keys, look at the variable org-disputed-keys.

‘yasnippet.el’
The way Org mode binds the TAB key (binding to [tab] instead of "\t")
overrules YASnippet’s access to this key. The following code fixed this problem:

(add-hook 'org-mode-hook

(lambda ()

(org-set-local 'yas/trigger-key [tab])

(define-key yas/keymap [tab] 'yas/next-field-or-maybe-expand)))

The latest version of yasnippet doesn’t play well with Org mode. If the above
code does not fix the conflict, start by defining the following function:

(defun yas/org-very-safe-expand ()

(let ((yas/fallback-behavior 'return-nil)) (yas/expand)))

Then, tell Org mode what to do with the new function:

(add-hook 'org-mode-hook

(lambda ()

(make-variable-buffer-local 'yas/trigger-key)

(setq yas/trigger-key [tab])

(add-to-list 'org-tab-first-hook 'yas/org-very-safe-expand)

(define-key yas/keymap [tab] 'yas/next-field)))

‘windmove.el’ by Hovav Shacham
This package also uses the S-<cursor> keys, so everything written in the para-
graph above about CUA mode also applies here. If you want make the wind-
move function active in locations where Org mode does not have special func-
tionality on S-CURSOR, add this to your configuration:

;; Make windmove work in org-mode:

(add-hook 'org-shiftup-final-hook 'windmove-up)

(add-hook 'org-shiftleft-final-hook 'windmove-left)

(add-hook 'org-shiftdown-final-hook 'windmove-down)

(add-hook 'org-shiftright-final-hook 'windmove-right)

‘viper.el’ by Michael Kifer
Viper uses C-c / and therefore makes this key not access the corresponding
Org mode command org-sparse-tree. You need to find another key for this
command, or override the key in viper-vi-global-user-map with

(define-key viper-vi-global-user-map "C-c /" 'org-sparse-tree)

15.11 org-crypt.el

Org-crypt will encrypt the text of an entry, but not the headline, or properties. Org-crypt
uses the Emacs EasyPG library to encrypt and decrypt files.

Any text below a headline that has a ‘:crypt:’ tag will be automatically be encrypted
when the file is saved. If you want to use a different tag just customize the org-crypt-

tag-matcher setting.

To use org-crypt it is suggested that you have the following in your ‘.emacs’:

Chapter 15: Miscellaneous 203

(require 'org-crypt)

(org-crypt-use-before-save-magic)

(setq org-tags-exclude-from-inheritance (quote ("crypt")))

(setq org-crypt-key nil)

;; GPG key to use for encryption

;; Either the Key ID or set to nil to use symmetric encryption.

(setq auto-save-default nil)

;; Auto-saving does not cooperate with org-crypt.el: so you need

;; to turn it off if you plan to use org-crypt.el quite often.

;; Otherwise, you'll get an (annoying) message each time you

;; start Org.

;; To turn it off only locally, you can insert this:

;;

;; # -*- buffer-auto-save-file-name: nil; -*-

Excluding the crypt tag from inheritance prevents already encrypted text being en-
crypted again.

Appendix A: Hacking 204

Appendix A Hacking

This appendix covers some aspects where users can extend the functionality of Org.

A.1 Hooks

Org has a large number of hook variables that can be used to add functionality. This
appendix about hacking is going to illustrate the use of some of them. A complete list
of all hooks with documentation is maintained by the Worg project and can be found at
http://orgmode.org/worg/org-configs/org-hooks.php.

A.2 Add-on packages

A large number of add-on packages have been written by various authors. These packages
are not part of Emacs, but they are distributed as contributed packages with the sepa-
rate release available at the Org mode home page at http://orgmode.org. The list of
contributed packages, along with documentation about each package, is maintained by the
Worg project at http://orgmode.org/worg/org-contrib/.

A.3 Adding hyperlink types

Org has a large number of hyperlink types built-in (see Chapter 4 [Hyperlinks], page 34). If
you would like to add new link types, Org provides an interface for doing so. Let’s look at an
example file, ‘org-man.el’, that will add support for creating links like ‘[[man:printf][The
printf manpage]]’ to show Unix manual pages inside Emacs:

;;; org-man.el - Support for links to manpages in Org

(require 'org)

(org-add-link-type "man" 'org-man-open)

(add-hook 'org-store-link-functions 'org-man-store-link)

(defcustom org-man-command 'man

"The Emacs command to be used to display a man page."

:group 'org-link

:type '(choice (const man) (const woman)))

(defun org-man-open (path)

"Visit the manpage on PATH.

PATH should be a topic that can be thrown at the man command."

(funcall org-man-command path))

(defun org-man-store-link ()

"Store a link to a manpage."

(when (memq major-mode '(Man-mode woman-mode))

;; This is a man page, we do make this link

(let* ((page (org-man-get-page-name))

(link (concat "man:" page))

http://orgmode.org/worg/org-configs/org-hooks.php
http://orgmode.org
http://orgmode.org/worg/org-contrib/

Appendix A: Hacking 205

(description (format "Manpage for %s" page)))

(org-store-link-props

:type "man"

:link link

:description description))))

(defun org-man-get-page-name ()

"Extract the page name from the buffer name."

;; This works for both `Man-mode' and `woman-mode'.

(if (string-match " \\(\\S-+\\)*" (buffer-name))

(match-string 1 (buffer-name))

(error "Cannot create link to this man page")))

(provide 'org-man)

;;; org-man.el ends here

You would activate this new link type in ‘.emacs’ with

(require 'org-man)

Let’s go through the file and see what it does.

1. It does (require 'org) to make sure that ‘org.el’ has been loaded.

2. The next line calls org-add-link-type to define a new link type with prefix ‘man’.
The call also contains the name of a function that will be called to follow such a link.

3. The next line adds a function to org-store-link-functions, in order to allow the
command C-c l to record a useful link in a buffer displaying a man page.

The rest of the file defines the necessary variables and functions. First there is a cus-
tomization variable that determines which Emacs command should be used to display man
pages. There are two options, man and woman. Then the function to follow a link is defined.
It gets the link path as an argument—in this case the link path is just a topic for the manual
command. The function calls the value of org-man-command to display the man page.

Finally the function org-man-store-link is defined. When you try to store a link with
C-c l, this function will be called to try to make a link. The function must first decide if it
is supposed to create the link for this buffer type; we do this by checking the value of the
variable major-mode. If not, the function must exit and return the value nil. If yes, the
link is created by getting the manual topic from the buffer name and prefixing it with the
string ‘man:’. Then it must call the command org-store-link-props and set the :type

and :link properties. Optionally you can also set the :description property to provide a
default for the link description when the link is later inserted into an Org buffer with C-c

C-l.

When it makes sense for your new link type, you may also define a function org-PREFIX-

complete-link that implements special (e.g. completion) support for inserting such a link
with C-c C-l. Such a function should not accept any arguments, and return the full link
with prefix.

Appendix A: Hacking 206

A.4 Context-sensitive commands

Org has several commands that act differently depending on context. The most important
example is the C-c C-c (see Section 15.7 [The very busy C-c C-c key], page 197). Also the
M-cursor and M-S-cursor keys have this property.

Add-ons can tap into this functionality by providing a function that detects special
context for that add-on and executes functionality appropriate for the context. Here is an
example from Dan Davison’s ‘org-R.el’ which allows you to evaluate commands based on
the ‘R’ programming language1. For this package, special contexts are lines that start with
#+R: or #+RR:.

(defun org-R-apply-maybe ()

"Detect if this is context for org-R and execute R commands."

(if (save-excursion

(beginning-of-line 1)

(looking-at "#\\+RR?:"))

(progn (call-interactively 'org-R-apply)

t) ;; to signal that we took action

nil)) ;; to signal that we did not

(add-hook 'org-ctrl-c-ctrl-c-hook 'org-R-apply-maybe)

The function first checks if the cursor is in such a line. If that is the case, org-R-apply
is called and the function returns t to signal that action was taken, and C-c C-c will stop
looking for other contexts. If the function finds it should do nothing locally, it returns nil
so that other, similar functions can have a try.

A.5 Tables and lists in arbitrary syntax

Since Orgtbl mode can be used as a minor mode in arbitrary buffers, a frequent feature
request has been to make it work with native tables in specific languages, for example LATEX.
However, this is extremely hard to do in a general way, would lead to a customization
nightmare, and would take away much of the simplicity of the Orgtbl mode table editor.

This appendix describes a different approach. We keep the Orgtbl mode table in its
native format (the source table), and use a custom function to translate the table to the
correct syntax, and to install it in the right location (the target table). This puts the burden
of writing conversion functions on the user, but it allows for a very flexible system.

Bastien added the ability to do the same with lists, in Orgstruct mode. You can use Org’s
facilities to edit and structure lists by turning orgstruct-mode on, then locally exporting
such lists in another format (HTML, LATEX or Texinfo.)

A.5.1 Radio tables

To define the location of the target table, you first need to create two lines that are comments
in the current mode, but contain magic words for Orgtbl mode to find. Orgtbl mode will
insert the translated table between these lines, replacing whatever was there before. For
example:

1 ‘org-R.el’ has been replaced by the Org mode functionality described in Chapter 14 [Working With
Source Code], page 165 and is now obsolete.

Appendix A: Hacking 207

/* BEGIN RECEIVE ORGTBL table_name */

/* END RECEIVE ORGTBL table_name */

Just above the source table, we put a special line that tells Orgtbl mode how to translate
this table and where to install it. For example:

#+ORGTBL: SEND table_name translation_function arguments....

table_name is the reference name for the table that is also used in the receiver lines.
translation_function is the Lisp function that does the translation. Furthermore, the
line can contain a list of arguments (alternating key and value) at the end. The arguments
will be passed as a property list to the translation function for interpretation. A few
standard parameters are already recognized and acted upon before the translation function
is called:

:skip N Skip the first N lines of the table. Hlines do count as separate lines for this
parameter!

:skipcols (n1 n2 ...)

List of columns that should be skipped. If the table has a column with calcu-
lation marks, that column is automatically discarded as well. Please note that
the translator function sees the table after the removal of these columns, the
function never knows that there have been additional columns.

The one problem remaining is how to keep the source table in the buffer without disturbing
the normal workings of the file, for example during compilation of a C file or processing of
a LATEX file. There are a number of different solutions:

• The table could be placed in a block comment if that is supported by the language.
For example, in C mode you could wrap the table between ‘/*’ and ‘*/’ lines.

• Sometimes it is possible to put the table after some kind of END statement, for example
‘\bye’ in TEX and ‘\end{document}’ in LATEX.

• You can just comment the table line-by-line whenever you want to process the file,
and uncomment it whenever you need to edit the table. This only sounds tedious—
the command M-x orgtbl-toggle-comment makes this comment-toggling very easy, in
particular if you bind it to a key.

A.5.2 A LATEX example of radio tables

The best way to wrap the source table in LATEX is to use the comment environment pro-
vided by ‘comment.sty’. It has to be activated by placing \usepackage{comment} into the
document header. Orgtbl mode can insert a radio table skeleton2 with the command M-x

orgtbl-insert-radio-table. You will be prompted for a table name, let’s say we use
‘salesfigures’. You will then get the following template:

% BEGIN RECEIVE ORGTBL salesfigures

% END RECEIVE ORGTBL salesfigures

\begin{comment}

#+ORGTBL: SEND salesfigures orgtbl-to-latex

| | |

2 By default this works only for LATEX, HTML, and Texinfo. Configure the variable orgtbl-radio-tables
to install templates for other modes.

Appendix A: Hacking 208

\end{comment}

The #+ORGTBL: SEND line tells Orgtbl mode to use the function orgtbl-to-latex to convert
the table into LATEX and to put it into the receiver location with name salesfigures. You
may now fill in the table—feel free to use the spreadsheet features3:

% BEGIN RECEIVE ORGTBL salesfigures

% END RECEIVE ORGTBL salesfigures

\begin{comment}

#+ORGTBL: SEND salesfigures orgtbl-to-latex

| Month | Days | Nr sold | per day |

|-------+------+---------+---------|

| Jan | 23 | 55 | 2.4 |

| Feb | 21 | 16 | 0.8 |

| March | 22 | 278 | 12.6 |

#+TBLFM: $4=$3/$2;%.1f

% $ (optional extra dollar to keep font-lock happy, see footnote)

\end{comment}

When you are done, press C-c C-c in the table to get the converted table inserted between
the two marker lines.

Now let’s assume you want to make the table header by hand, because you want to
control how columns are aligned, etc. In this case we make sure that the table translator
skips the first 2 lines of the source table, and tell the command to work as a splice, i.e. to
not produce header and footer commands of the target table:

\begin{tabular}{lrrr}

Month & \multicolumn{1}{c}{Days} & Nr.\ sold & per day\\

% BEGIN RECEIVE ORGTBL salesfigures

% END RECEIVE ORGTBL salesfigures

\end{tabular}

%

\begin{comment}

#+ORGTBL: SEND salesfigures orgtbl-to-latex :splice t :skip 2

| Month | Days | Nr sold | per day |

|-------+------+---------+---------|

| Jan | 23 | 55 | 2.4 |

| Feb | 21 | 16 | 0.8 |

| March | 22 | 278 | 12.6 |

#+TBLFM: $4=$3/$2;%.1f

\end{comment}

The LATEX translator function orgtbl-to-latex is already part of Orgtbl mode. It
uses a tabular environment to typeset the table and marks horizontal lines with \hline.
Furthermore, it interprets the following parameters (see also see Section A.5.3 [Translator
functions], page 209):

3 If the ‘#+TBLFM’ line contains an odd number of dollar characters, this may cause problems with font-lock
in LATEX mode. As shown in the example you can fix this by adding an extra line inside the comment

environment that is used to balance the dollar expressions. If you are using AUCTEX with the font-latex
library, a much better solution is to add the comment environment to the variable LaTeX-verbatim-

environments.

Appendix A: Hacking 209

:splice nil/t

When set to t, return only table body lines, don’t wrap them into a tabular
environment. Default is nil.

:fmt fmt A format to be used to wrap each field, it should contain %s for the original
field value. For example, to wrap each field value in dollars, you could use :fmt
"$%s$". This may also be a property list with column numbers and formats,
for example :fmt (2 "$%s$" 4 "%s\\%%"). A function of one argument can be
used in place of the strings; the function must return a formatted string.

:efmt efmt

Use this format to print numbers with exponentials. The format should have %s
twice for inserting mantissa and exponent, for example "%s\\times10^{%s}".
The default is "%s\\,(%s)". This may also be a property list with column
numbers and formats, for example :efmt (2 "$%s\\times10^{%s}$" 4

"$%s\\cdot10^{%s}$"). After efmt has been applied to a value, fmt will also
be applied. Similar to fmt, functions of two arguments can be supplied instead
of strings.

A.5.3 Translator functions

Orgtbl mode has several translator functions built-in: orgtbl-to-csv (comma-separated
values), orgtbl-to-tsv (TAB-separated values) orgtbl-to-latex, orgtbl-to-html, and
orgtbl-to-texinfo. Except for orgtbl-to-html4, these all use a generic translator,
orgtbl-to-generic. For example, orgtbl-to-latex itself is a very short function that
computes the column definitions for the tabular environment, defines a few field and line
separators and then hands processing over to the generic translator. Here is the entire code:

(defun orgtbl-to-latex (table params)

"Convert the Orgtbl mode TABLE to LaTeX."

(let* ((alignment (mapconcat (lambda (x) (if x "r" "l"))

org-table-last-alignment ""))

(params2

(list

:tstart (concat "\\begin{tabular}{" alignment "}")

:tend "\\end{tabular}"

:lstart "" :lend " \\\\" :sep " & "

:efmt "%s\\,(%s)" :hline "\\hline")))

(orgtbl-to-generic table (org-combine-plists params2 params))))

As you can see, the properties passed into the function (variable PARAMS) are combined
with the ones newly defined in the function (variable PARAMS2). The ones passed into
the function (i.e. the ones set by the ‘ORGTBL SEND’ line) take precedence. So if you would
like to use the LATEX translator, but wanted the line endings to be ‘\\[2mm]’ instead of the
default ‘\\’, you could just overrule the default with

#+ORGTBL: SEND test orgtbl-to-latex :lend " \\\\[2mm]"

For a new language, you can either write your own converter function in analogy with
the LATEX translator, or you can use the generic function directly. For example, if you have

4 The HTML translator uses the same code that produces tables during HTML export.

Appendix A: Hacking 210

a language where a table is started with ‘!BTBL!’, ended with ‘!ETBL!’, and where table
lines are started with ‘!BL!’, ended with ‘!EL!’, and where the field separator is a TAB,
you could call the generic translator like this (on a single line!):

#+ORGTBL: SEND test orgtbl-to-generic :tstart "!BTBL!" :tend "!ETBL!"

:lstart "!BL! " :lend " !EL!" :sep "\t"

Please check the documentation string of the function orgtbl-to-generic for a full list of
parameters understood by that function, and remember that you can pass each of them into
orgtbl-to-latex, orgtbl-to-texinfo, and any other function using the generic function.

Of course you can also write a completely new function doing complicated things the
generic translator cannot do. A translator function takes two arguments. The first argument
is the table, a list of lines, each line either the symbol hline or a list of fields. The second
argument is the property list containing all parameters specified in the ‘#+ORGTBL: SEND’
line. The function must return a single string containing the formatted table. If you write
a generally useful translator, please post it on emacs-orgmode@gnu.org so that others can
benefit from your work.

A.5.4 Radio lists

Sending and receiving radio lists works exactly the same way as sending and receiving radio
tables (see Section A.5.1 [Radio tables], page 206). As for radio tables, you can insert radio
list templates in HTML, LATEX and Texinfo modes by calling org-list-insert-radio-

list.

Here are the differences with radio tables:

− Orgstruct mode must be active.

− Use the ORGLST keyword instead of ORGTBL.

− The available translation functions for radio lists don’t take parameters.

− C-c C-c will work when pressed on the first item of the list.

Here is a LATEX example. Let’s say that you have this in your LATEX file:

% BEGIN RECEIVE ORGLST to-buy

% END RECEIVE ORGLST to-buy

\begin{comment}

#+ORGLST: SEND to-buy org-list-to-latex

- a new house

- a new computer

+ a new keyboard

+ a new mouse

- a new life

\end{comment}

Pressing ‘C-c C-c’ on a new house and will insert the converted LATEX list between the
two marker lines.

A.6 Dynamic blocks

Org documents can contain dynamic blocks. These are specially marked regions that are
updated by some user-written function. A good example for such a block is the clock table
inserted by the command C-c C-x C-r (see Section 8.4 [Clocking work time], page 74).

mailto:emacs-orgmode@gnu.org

Appendix A: Hacking 211

Dynamic blocks are enclosed by a BEGIN-END structure that assigns a name to the
block and can also specify parameters for the function producing the content of the block.

#+BEGIN: myblock :parameter1 value1 :parameter2 value2 ...

#+END:

Dynamic blocks are updated with the following commands

C-c C-x C-u org-dblock-update

Update dynamic block at point.

C-u C-c C-x C-u

Update all dynamic blocks in the current file.

Updating a dynamic block means to remove all the text between BEGIN and END, parse
the BEGIN line for parameters and then call the specific writer function for this block to
insert the new content. If you want to use the original content in the writer function, you
can use the extra parameter :content.

For a block with name myblock, the writer function is org-dblock-write:myblock with
as only parameter a property list with the parameters given in the begin line. Here is a
trivial example of a block that keeps track of when the block update function was last run:

#+BEGIN: block-update-time :format "on %m/%d/%Y at %H:%M"

#+END:

The corresponding block writer function could look like this:

(defun org-dblock-write:block-update-time (params)

(let ((fmt (or (plist-get params :format) "%d. %m. %Y")))

(insert "Last block update at: "

(format-time-string fmt (current-time)))))

If you want to make sure that all dynamic blocks are always up-to-date, you could add
the function org-update-all-dblocks to a hook, for example before-save-hook. org-

update-all-dblocks is written in a way such that it does nothing in buffers that are not
in org-mode.

You can narrow the current buffer to the current dynamic block (like any other block)
with org-narrow-to-block.

A.7 Special agenda views

Org provides a special hook that can be used to narrow down the selection made by these
agenda views: agenda, todo, alltodo, tags, tags-todo, tags-tree. You may specify a
function that is used at each match to verify if the match should indeed be part of the
agenda view, and if not, how much should be skipped. You can specify a global condition
that will be applied to all agenda views, this condition would be stored in the variable
org-agenda-skip-function-global. More commonly, such a definition is applied only to
specific custom searches, using org-agenda-skip-function.

Let’s say you want to produce a list of projects that contain a WAITING tag anywhere
in the project tree. Let’s further assume that you have marked all tree headings that define
a project with the TODO keyword PROJECT. In this case you would run a TODO search

Appendix A: Hacking 212

for the keyword PROJECT, but skip the match unless there is a WAITING tag anywhere
in the subtree belonging to the project line.

To achieve this, you must write a function that searches the subtree for the tag. If
the tag is found, the function must return nil to indicate that this match should not be
skipped. If there is no such tag, return the location of the end of the subtree, to indicate
that search should continue from there.

(defun my-skip-unless-waiting ()

"Skip trees that are not waiting"

(let ((subtree-end (save-excursion (org-end-of-subtree t))))

(if (re-search-forward ":waiting:" subtree-end t)

nil ; tag found, do not skip

subtree-end))) ; tag not found, continue after end of subtree

Now you may use this function in an agenda custom command, for example like this:

(org-add-agenda-custom-command

'("b" todo "PROJECT"

((org-agenda-skip-function 'my-skip-unless-waiting)

(org-agenda-overriding-header "Projects waiting for something: "))))

Note that this also binds org-agenda-overriding-header to get a meaningful header
in the agenda view.

A general way to create custom searches is to base them on a search for entries with a
certain level limit. If you want to study all entries with your custom search function, simply
do a search for ‘LEVEL>0’5, and then use org-agenda-skip-function to select the entries
you really want to have.

You may also put a Lisp form into org-agenda-skip-function. In particular, you may
use the functions org-agenda-skip-entry-if and org-agenda-skip-subtree-if in this
form, for example:

(org-agenda-skip-entry-if ’scheduled)

Skip current entry if it has been scheduled.

(org-agenda-skip-entry-if ’notscheduled)

Skip current entry if it has not been scheduled.

(org-agenda-skip-entry-if ’deadline)

Skip current entry if it has a deadline.

(org-agenda-skip-entry-if ’scheduled ’deadline)

Skip current entry if it has a deadline, or if it is scheduled.

(org-agenda-skip-entry-if ’todo ’("TODO" "WAITING"))

Skip current entry if the TODO keyword is TODO or WAITING.

(org-agenda-skip-entry-if ’todo ’done)

Skip current entry if the TODO keyword marks a DONE state.

(org-agenda-skip-entry-if ’timestamp)

Skip current entry if it has any timestamp, may also be deadline or scheduled.

5 Note that, when using org-odd-levels-only, a level number corresponds to order in the hierarchy, not
to the number of stars.

Appendix A: Hacking 213

(org-agenda-skip-entry ’regexp "regular expression")

Skip current entry if the regular expression matches in the entry.

(org-agenda-skip-entry ’notregexp "regular expression")

Skip current entry unless the regular expression matches.

(org-agenda-skip-subtree-if ’regexp "regular expression")

Same as above, but check and skip the entire subtree.

Therefore we could also have written the search for WAITING projects like this, even
without defining a special function:

(org-add-agenda-custom-command

'("b" todo "PROJECT"

((org-agenda-skip-function '(org-agenda-skip-subtree-if

'regexp ":waiting:"))

(org-agenda-overriding-header "Projects waiting for something: "))))

A.8 Extracting agenda information

Org provides commands to access agenda information for the command line in Emacs batch
mode. This extracted information can be sent directly to a printer, or it can be read by
a program that does further processing of the data. The first of these commands is the
function org-batch-agenda, that produces an agenda view and sends it as ASCII text to
STDOUT. The command takes a single string as parameter. If the string has length 1,
it is used as a key to one of the commands you have configured in org-agenda-custom-

commands, basically any key you can use after C-c a. For example, to directly print the
current TODO list, you could use

emacs -batch -l ~/.emacs -eval '(org-batch-agenda "t")' | lpr

If the parameter is a string with 2 or more characters, it is used as a tags/TODO match
string. For example, to print your local shopping list (all items with the tag ‘shop’, but
excluding the tag ‘NewYork’), you could use

emacs -batch -l ~/.emacs \

-eval '(org-batch-agenda "+shop-NewYork")' | lpr

You may also modify parameters on the fly like this:

emacs -batch -l ~/.emacs \

-eval '(org-batch-agenda "a" \

org-agenda-span (quote month) \

org-agenda-include-diary nil \

org-agenda-files (quote ("~/org/project.org")))' \

| lpr

which will produce a 30-day agenda, fully restricted to the Org file ‘~/org/projects.org’,
not even including the diary.

If you want to process the agenda data in more sophisticated ways, you can use the
command org-batch-agenda-csv to get a comma-separated list of values for each agenda
item. Each line in the output will contain a number of fields separated by commas. The
fields in a line are:

Appendix A: Hacking 214

category The category of the item
head The headline, without TODO keyword, TAGS and PRIORITY
type The type of the agenda entry, can be

todo selected in TODO match
tagsmatch selected in tags match
diary imported from diary
deadline a deadline
scheduled scheduled
timestamp appointment, selected by timestamp
closed entry was closed on date
upcoming-deadline warning about nearing deadline
past-scheduled forwarded scheduled item
block entry has date block including date

todo The TODO keyword, if any
tags All tags including inherited ones, separated by colons
date The relevant date, like 2007-2-14
time The time, like 15:00-16:50
extra String with extra planning info
priority-l The priority letter if any was given
priority-n The computed numerical priority

Time and date will only be given if a timestamp (or deadline/scheduled) led to the selection
of the item.

A CSV list like this is very easy to use in a post-processing script. For example, here is a
Perl program that gets the TODO list from Emacs/Org and prints all the items, preceded
by a checkbox:

#!/usr/bin/perl

define the Emacs command to run

$cmd = "emacs -batch -l ~/.emacs -eval '(org-batch-agenda-csv \"t\")'";

run it and capture the output

$agenda = qx{$cmd 2>/dev/null};

loop over all lines

foreach $line (split(/\n/,$agenda)) {

get the individual values

($category,$head,$type,$todo,$tags,$date,$time,$extra,

$priority_l,$priority_n) = split(/,/,$line);

process and print

print "[] $head\n";

}

A.9 Using the property API

Here is a description of the functions that can be used to work with properties.

Appendix A: Hacking 215

[Function]org-entry-properties &optional pom which
Get all properties of the entry at point-or-marker POM.
This includes the TODO keyword, the tags, time strings for deadline, scheduled, and
clocking, and any additional properties defined in the entry. The return value is an
alist. Keys may occur multiple times if the property key was used several times.
POM may also be nil, in which case the current entry is used. If WHICH is nil or
‘all’, get all properties. If WHICH is ‘special’ or ‘standard’, only get that subclass.

[Function]org-entry-get pom property &optional inherit
Get value of PROPERTY for entry at point-or-marker POM. By default, this only
looks at properties defined locally in the entry. If INHERIT is non-nil and the en-
try does not have the property, then also check higher levels of the hierarchy. If
INHERIT is the symbol selective, use inheritance if and only if the setting of org-
use-property-inheritance selects PROPERTY for inheritance.

[Function]org-entry-delete pom property
Delete the property PROPERTY from entry at point-or-marker POM.

[Function]org-entry-put pom property value
Set PROPERTY to VALUE for entry at point-or-marker POM.

[Function]org-buffer-property-keys &optional include-specials
Get all property keys in the current buffer.

[Function]org-insert-property-drawer
Insert a property drawer at point.

[Function]org-entry-put-multivalued-property pom property &rest values
Set PROPERTY at point-or-marker POM to VALUES. VALUES should be a list of
strings. They will be concatenated, with spaces as separators.

[Function]org-entry-get-multivalued-property pom property
Treat the value of the property PROPERTY as a whitespace-separated list of values
and return the values as a list of strings.

[Function]org-entry-add-to-multivalued-property pom property value
Treat the value of the property PROPERTY as a whitespace-separated list of values
and make sure that VALUE is in this list.

[Function]org-entry-remove-from-multivalued-property pom property value
Treat the value of the property PROPERTY as a whitespace-separated list of values
and make sure that VALUE is not in this list.

[Function]org-entry-member-in-multivalued-property pom property value
Treat the value of the property PROPERTY as a whitespace-separated list of values
and check if VALUE is in this list.

[User Option]org-property-allowed-value-functions
Hook for functions supplying allowed values for a specific property. The functions
must take a single argument, the name of the property, and return a flat list of
allowed values. If ‘:ETC’ is one of the values, use the values as completion help, but
allow also other values to be entered. The functions must return nil if they are not
responsible for this property.

Appendix A: Hacking 216

A.10 Using the mapping API

Org has sophisticated mapping capabilities to find all entries satisfying certain criteria.
Internally, this functionality is used to produce agenda views, but there is also an API that
can be used to execute arbitrary functions for each or selected entries. The main entry
point for this API is:

[Function]org-map-entries func &optional match scope &rest skip
Call FUNC at each headline selected by MATCH in SCOPE.

FUNC is a function or a Lisp form. The function will be called without arguments,
with the cursor positioned at the beginning of the headline. The return values of all
calls to the function will be collected and returned as a list.

The call to FUNC will be wrapped into a save-excursion form, so FUNC does not need
to preserve point. After evaluation, the cursor will be moved to the end of the line
(presumably of the headline of the processed entry) and search continues from there.
Under some circumstances, this may not produce the wanted results. For example, if
you have removed (e.g. archived) the current (sub)tree it could mean that the next
entry will be skipped entirely. In such cases, you can specify the position from where
search should continue by making FUNC set the variable ‘org-map-continue-from’ to
the desired buffer position.

MATCH is a tags/property/todo match as it is used in the agenda match view. Only
headlines that are matched by this query will be considered during the iteration.
When MATCH is nil or t, all headlines will be visited by the iteration.

SCOPE determines the scope of this command. It can be any of:

nil the current buffer, respecting the restriction if any
tree the subtree started with the entry at point
region The entries within the active region, if any
file the current buffer, without restriction
file-with-archives

the current buffer, and any archives associated with it
agenda all agenda files
agenda-with-archives

all agenda files with any archive files associated with them
(file1 file2 ...)

if this is a list, all files in the list will be scanned

The remaining args are treated as settings for the skipping facilities of the scanner.
The following items can be given here:

archive skip trees with the archive tag
comment skip trees with the COMMENT keyword
function or Lisp form

will be used as value for org-agenda-skip-function,
so whenever the function returns t, FUNC
will not be called for that entry and search will
continue from the point where the function leaves it

The function given to that mapping routine can really do anything you like. It can
use the property API (see Section A.9 [Using the property API], page 214) to gather more

Appendix A: Hacking 217

information about the entry, or in order to change metadata in the entry. Here are a couple
of functions that might be handy:

[Function]org-todo &optional arg
Change the TODO state of the entry. See the docstring of the functions for the many
possible values for the argument ARG.

[Function]org-priority &optional action
Change the priority of the entry. See the docstring of this function for the possible
values for ACTION.

[Function]org-toggle-tag tag &optional onoff
Toggle the tag TAG in the current entry. Setting ONOFF to either on or off will
not toggle tag, but ensure that it is either on or off.

[Function]org-promote
Promote the current entry.

[Function]org-demote
Demote the current entry.

Here is a simple example that will turn all entries in the current file with a tag TOMORROW

into TODO entries with the keyword UPCOMING. Entries in comment trees and in archive
trees will be ignored.

(org-map-entries

'(org-todo "UPCOMING")

"+TOMORROW" 'file 'archive 'comment)

The following example counts the number of entries with TODO keyword WAITING, in
all agenda files.

(length (org-map-entries t "/+WAITING" 'agenda))

Appendix B: MobileOrg 218

Appendix B MobileOrg

MobileOrg is an application for the iPhone/iPod Touch series of devices, developed by
Richard Moreland. MobileOrg offers offline viewing and capture support for an Org mode
system rooted on a “real” computer. It does also allow you to record changes to existing
entries. Android users should check out MobileOrg Android by Matt Jones.

This appendix describes the support Org has for creating agenda views in a format that
can be displayed by MobileOrg, and for integrating notes captured and changes made by
MobileOrg into the main system.

For changing tags and TODO states in MobileOrg, you should have set up the cus-
tomization variables org-todo-keywords and org-tags-alist to cover all important tags
and TODO keywords, even if individual files use only part of these. MobileOrg will also
offer you states and tags set up with in-buffer settings, but it will understand the logistics
of TODO state sets (see Section 5.2.5 [Per-file keywords], page 45) and mutually exclusive
tags (see Section 6.2 [Setting tags], page 54) only for those set in these variables.

B.1 Setting up the staging area

MobileOrg needs to interact with Emacs through a directory on a server. If you are using
a public server, you should consider to encrypt the files that are uploaded to the server.
This can be done with Org mode 7.02 and with MobileOrg 1.5 (iPhone version), and you
need an ‘openssl’ installation on your system. To turn on encryption, set a password in
MobileOrg and, on the Emacs side, configure the variable org-mobile-use-encryption1.

The easiest way to create that directory is to use a free Dropbox.com account2. When
MobileOrg first connects to your Dropbox, it will create a directory MobileOrg inside the
Dropbox. After the directory has been created, tell Emacs about it:

(setq org-mobile-directory "~/Dropbox/MobileOrg")

Org mode has commands to put files for MobileOrg into that directory, and to read
captured notes from there.

B.2 Pushing to MobileOrg

This operation copies all files currently listed in org-mobile-files to the directory org-

mobile-directory. By default this list contains all agenda files (as listed in org-agenda-

files), but additional files can be included by customizing org-mobile-files. File names
will be staged with paths relative to org-directory, so all files should be inside this di-
rectory. The push operation also creates a special Org file ‘agendas.org’ with all custom
agenda view defined by the user3. Finally, Org writes the file ‘index.org’, containing links

1 If you can safely store the password in your Emacs setup, you might also want to configure org-mobile-
encryption-password. Please read the docstring of that variable. Note that encryption will apply only
to the contents of the ‘.org’ files. The file names themselves will remain visible.

2 If you cannot use Dropbox, or if your version of MobileOrg does not support it, you can use a webdav
server. For more information, check out the documentation of MobileOrg and also this FAQ entry.

3 While creating the agendas, Org mode will force ID properties on all referenced entries, so that these
entries can be uniquely identified if MobileOrg flags them for further action. If you do not want to get
these properties in so many entries, you can set the variable org-mobile-force-id-on-agenda-items to
nil. Org mode will then rely on outline paths, in the hope that these will be unique enough.

http://mobileorg.ncogni.to/
http://wiki.github.com/matburt/mobileorg-android/
http://dropbox.com
http://orgmode.org/worg/org-faq.html#mobileorg_webdav

Appendix B: MobileOrg 219

to all other files. MobileOrg first reads this file from the server, and then downloads all
agendas and Org files listed in it. To speed up the download, MobileOrg will only read files
whose checksums4 have changed.

B.3 Pulling from MobileOrg

When MobileOrg synchronizes with the server, it not only pulls the Org files for viewing.
It also appends captured entries and pointers to flagged and changed entries to the file
‘mobileorg.org’ on the server. Org has a pull operation that integrates this information
into an inbox file and operates on the pointers to flagged entries. Here is how it works:

1. Org moves all entries found in ‘mobileorg.org’5 and appends them to the file pointed
to by the variable org-mobile-inbox-for-pull. Each captured entry and each editing
event will be a top-level entry in the inbox file.

2. After moving the entries, Org will attempt to implement the changes made in Mobile-
Org. Some changes are applied directly and without user interaction. Examples are
all changes to tags, TODO state, headline and body text that can be cleanly applied.
Entries that have been flagged for further action will receive a tag :FLAGGED:, so that
they can be easily found again. When there is a problem finding an entry or applying
the change, the pointer entry will remain in the inbox and will be marked with an error
message. You need to later resolve these issues by hand.

3. Org will then generate an agenda view with all flagged entries. The user should then go
through these entries and do whatever actions are necessary. If a note has been stored
while flagging an entry in MobileOrg, that note will be displayed in the echo area when
the cursor is on the corresponding agenda line.

? Pressing ? in that special agenda will display the full flagging note in
another window and also push it onto the kill ring. So you could use ?

z C-y C-c C-c to store that flagging note as a normal note in the entry.
Pressing ? twice in succession will offer to remove the :FLAGGED: tag along
with the recorded flagging note (which is stored in a property). In this way
you indicate that the intended processing for this flagged entry is finished.

If you are not able to process all flagged entries directly, you can always return to this
agenda view6 using C-c a ?.

4 stored automatically in the file ‘checksums.dat’
5 ‘mobileorg.org’ will be empty after this operation.
6 Note, however, that there is a subtle difference. The view created automatically by M-x org-mobile-

pull RET is guaranteed to search all files that have been addressed by the last pull. This might include
a file that is not currently in your list of agenda files. If you later use C-c a ? to regenerate the view,
only the current agenda files will be searched.

Appendix C: History and acknowledgments 220

Appendix C History and acknowledgments

Org was born in 2003, out of frustration over the user interface of the Emacs Outline
mode. I was trying to organize my notes and projects, and using Emacs seemed to be
the natural way to go. However, having to remember eleven different commands with two
or three keys per command, only to hide and show parts of the outline tree, that seemed
entirely unacceptable to me. Also, when using outlines to take notes, I constantly wanted
to restructure the tree, organizing it parallel to my thoughts and plans. Visibility cycling
and structure editing were originally implemented in the package ‘outline-magic.el’, but
quickly moved to the more general ‘org.el’. As this environment became comfortable for
project planning, the next step was adding TODO entries, basic timestamps, and table
support. These areas highlighted the two main goals that Org still has today: to be a
new, outline-based, plain text mode with innovative and intuitive editing features, and to
incorporate project planning functionality directly into a notes file.

Since the first release, literally thousands of emails to me or to emacs-orgmode@gnu.org

have provided a constant stream of bug reports, feedback, new ideas, and sometimes patches
and add-on code. Many thanks to everyone who has helped to improve this package. I am
trying to keep here a list of the people who had significant influence in shaping one or more
aspects of Org. The list may not be complete, if I have forgotten someone, please accept
my apologies and let me know.

Before I get to this list, a few special mentions are in order:

Bastien Guerry
Bastien has written a large number of extensions to Org (most of them in-
tegrated into the core by now), including the LATEX exporter and the plain
list parser. His support during the early days, when he basically acted as co-
maintainer, was central to the success of this project. Bastien also invented
Worg, helped establishing the Web presence of Org, and sponsors hosting costs
for the orgmode.org website.

Eric Schulte and Dan Davison
Eric and Dan are jointly responsible for the Org-babel system, which turns
Org into a multi-language environment for evaluating code and doing literate
programming and reproducible research.

John Wiegley
John has contributed a number of great ideas and patches directly to Org,
including the attachment system (‘org-attach.el’), integration with Apple
Mail (‘org-mac-message.el’), hierarchical dependencies of TODO items, habit
tracking (‘org-habits.el’), and encryption (‘org-crypt.el’). Also, the cap-
ture system is really an extended copy of his great ‘remember.el’.

Sebastian Rose
Without Sebastian, the HTML/XHTML publishing of Org would be the pitiful
work of an ignorant amateur. Sebastian has pushed this part of Org onto a
much higher level. He also wrote ‘org-info.js’, a Java script for displaying
webpages derived from Org using an Info-like or a folding interface with single-
key navigation.

mailto:emacs-orgmode@gnu.org

Appendix C: History and acknowledgments 221

OK, now to the full list of contributions! Again, please let me know what I am missing
here!

• Russel Adams came up with the idea for drawers.

• Thomas Baumann wrote ‘org-bbdb.el’ and ‘org-mhe.el’.

• Christophe Bataillon created the great unicorn logo that we use on the Org mode
website.

• Alex Bochannek provided a patch for rounding timestamps.

• Jan Bcker wrote ‘org-docview.el’.

• Brad Bozarth showed how to pull RSS feed data into Org mode files.

• Tom Breton wrote ‘org-choose.el’.

• Charles Cave’s suggestion sparked the implementation of templates for Remember,
which are now templates for capture.

• Pavel Chalmoviansky influenced the agenda treatment of items with specified time.

• Gregory Chernov patched support for Lisp forms into table calculations and improved
XEmacs compatibility, in particular by porting ‘nouline.el’ to XEmacs.

• Sacha Chua suggested copying some linking code from Planner.

• Baoqiu Cui contributed the DocBook exporter.

• Eddward DeVilla proposed and tested checkbox statistics. He also came up with the
idea of properties, and that there should be an API for them.

• Nick Dokos tracked down several nasty bugs.

• Kees Dullemond used to edit projects lists directly in HTML and so inspired some of
the early development, including HTML export. He also asked for a way to narrow
wide table columns.

• Thomas S. Dye contributed documentation on Worg and helped integrating the Org-
Babel documentation into the manual.

• Christian Egli converted the documentation into Texinfo format, inspired the agenda,
patched CSS formatting into the HTML exporter, and wrote ‘org-taskjuggler.el’.

• David Emery provided a patch for custom CSS support in exported HTML agendas.

• Nic Ferrier contributed mailcap and XOXO support.

• Miguel A. Figueroa-Villanueva implemented hierarchical checkboxes.

• John Foerch figured out how to make incremental search show context around a match
in a hidden outline tree.

• Raimar Finken wrote ‘org-git-line.el’.

• Mikael Fornius works as a mailing list moderator.

• Austin Frank works as a mailing list moderator.

• Eric Fraga drove the development of BEAMER export with ideas and testing.

• Barry Gidden did proofreading the manual in preparation for the book publication
through Network Theory Ltd.

• Niels Giesen had the idea to automatically archive DONE trees.

• Nicolas Goaziou rewrote much of the plain list code.

• Kai Grossjohann pointed out key-binding conflicts with other packages.

Appendix C: History and acknowledgments 222

• Brian Gough of Network Theory Ltd publishes the Org mode manual as a book.

• Bernt Hansen has driven much of the support for auto-repeating tasks, task state
change logging, and the clocktable. His clear explanations have been critical when we
started to adopt the Git version control system.

• Manuel Hermenegildo has contributed various ideas, small fixes and patches.

• Phil Jackson wrote ‘org-irc.el’.

• Scott Jaderholm proposed footnotes, control over whitespace between folded entries,
and column view for properties.

• Matt Jones wrote MobileOrg Android.

• Tokuya Kameshima wrote ‘org-wl.el’ and ‘org-mew.el’.

• Shidai Liu ("Leo") asked for embedded LATEX and tested it. He also provided frequent
feedback and some patches.

• Matt Lundin has proposed last-row references for table formulas and named invisible
anchors. He has also worked a lot on the FAQ.

• David Maus wrote ‘org-atom.el’, maintains the issues file for Org, and is a prolific
contributor on the mailing list with competent replies, small fixes and patches.

• Jason F. McBrayer suggested agenda export to CSV format.

• Max Mikhanosha came up with the idea of refiling.

• Dmitri Minaev sent a patch to set priority limits on a per-file basis.

• Stefan Monnier provided a patch to keep the Emacs-Lisp compiler happy.

• Richard Moreland wrote MobileOrg for the iPhone.

• Rick Moynihan proposed allowing multiple TODO sequences in a file and being able
to quickly restrict the agenda to a subtree.

• Todd Neal provided patches for links to Info files and Elisp forms.

• Greg Newman refreshed the unicorn logo into its current form.

• Tim O’Callaghan suggested in-file links, search options for general file links, and TAGS.

• Osamu Okano wrote ‘orgcard2ref.pl’, a Perl program to create a text version of the
reference card.

• Takeshi Okano translated the manual and David O’Toole’s tutorial into Japanese.

• Oliver Oppitz suggested multi-state TODO items.

• Scott Otterson sparked the introduction of descriptive text for links, among other
things.

• Pete Phillips helped during the development of the TAGS feature, and provided fre-
quent feedback.

• Martin Pohlack provided the code snippet to bundle character insertion into bundles
of 20 for undo.

• T.V. Raman reported bugs and suggested improvements.

• Matthias Rempe (Oelde) provided ideas, Windows support, and quality control.

• Paul Rivier provided the basic implementation of named footnotes. He also acted as
mailing list moderator for some time.

• Kevin Rogers contributed code to access VM files on remote hosts.

Appendix C: History and acknowledgments 223

• Frank Ruell solved the mystery of the keymapp nil bug, a conflict with ‘allout.el’.

• Jason Riedy generalized the send-receive mechanism for Orgtbl tables with extensive
patches.

• Philip Rooke created the Org reference card, provided lots of feedback, developed and
applied standards to the Org documentation.

• Christian Schlauer proposed angular brackets around links, among other things.

• Paul Sexton wrote ‘org-ctags.el’.

• Linking to VM/BBDB/Gnus was first inspired by Tom Shannon’s
‘organizer-mode.el’.

• Ilya Shlyakhter proposed the Archive Sibling, line numbering in literal examples, and
remote highlighting for referenced code lines.

• Stathis Sideris wrote the ‘ditaa.jar’ ASCII to PNG converter that is now packaged
into Org’s ‘contrib’ directory.

• Daniel Sinder came up with the idea of internal archiving by locking subtrees.

• Dale Smith proposed link abbreviations.

• James TD Smith has contributed a large number of patches for useful tweaks and
features.

• Adam Spiers asked for global linking commands, inspired the link extension system,
added support for mairix, and proposed the mapping API.

• Ulf Stegemann created the table to translate special symbols to HTML, LATEX, UTF-8,
Latin-1 and ASCII.

• Andy Stewart contributed code to ‘org-w3m.el’, to copy HTML content with links
transformation to Org syntax.

• David O’Toole wrote ‘org-publish.el’ and drafted the manual chapter about pub-
lishing.

• Jambunathan K contributed the ODT exporter.

• Sebastien Vauban reported many issues with LATEX and BEAMER export and enabled
source code highlighting in Gnus.

• Stefan Vollmar organized a video-recorded talk at the Max-Planck-Institute for Neu-
rology. He also inspired the creation of a concept index for HTML export.

• Jürgen Vollmer contributed code generating the table of contents in HTML output.

• Samuel Wales has provided important feedback and bug reports.

• Chris Wallace provided a patch implementing the ‘QUOTE’ keyword.

• David Wainberg suggested archiving, and improvements to the linking system.

• Carsten Wimmer suggested some changes and helped fix a bug in linking to Gnus.

• Roland Winkler requested additional key bindings to make Org work on a tty.

• Piotr Zielinski wrote ‘org-mouse.el’, proposed agenda blocks and contributed various
ideas and code snippets.

•

Concept index 224

Concept index

#
#+ARCHIVE . 90
#+ATTR DOCBOOK . 141
#+ATTR HTML . 131
#+ATTR LaTeX . 136, 137
#+ATTR ODT 144, 145, 146, 150
#+AUTHOR . 126
#+BEGIN, clocktable . 76
#+BEGIN, columnview . 65
#+BEGIN:dynamic block . 211
#+BEGIN CENTER . 118
#+BEGIN COMMENT . 119
#+BEGIN DOCBOOK . 140
#+BEGIN EXAMPLE . 119
#+BEGIN HTML . 130, 131
#+BEGIN LaTeX . 136
#+BEGIN QUOTE . 118
#+BEGIN SRC . 120, 165
#+BEGIN VERSE . 118
#+BIND . 126
#+CALL . 168
#+CAPTION 119, 131, 136, 137, 141
#+CATEGORY . 101
#+COLUMNS . 62
#+CONSTANTS . 25
#+DATE . 126
#+DESCRIPTION . 126
#+DOCBOOK . 140
#+DRAWERS . 14
#+EMAIL . 126
#+EXPORT EXCLUDE TAGS 126
#+EXPORT SELECT TAGS 126
#+FILETAGS . 54
#+HEADER: . 172
#+HEADERS: . 172
#+HTML . 130
#+INCLUDE . 121
#+INFOJS OPT . 134
#+KEYWORDS . 126
#+LABEL . 119, 136, 137, 141
#+LANGUAGE . 126
#+LaTeX . 136
#+LATEX CLASS . 135
#+LATEX CLASS OPTIONS 135
#+LATEX HEADER . 126, 135
#+LINK . 40
#+LINK HOME . 126
#+LINK UP . 126
#+MACRO . 122
#+NAME . 165
#+ODT STYLES FILE . 143
#+OPTIONS . 117, 126
#+ORGLST . 210
#+ORGTBL . 207

#+ORGTBL, SEND . 207
#+PLOT . 32
#+PRIORITIES . 50
#+PROPERTY . 58
#+RESULTS . 168
#+SEQ TODO . 45
#+SETUPFILE . 194
#+STARTUP: . 194
#+STYLE . 133
#+TAGS . 55
#+TBLFM . 27
#+TBLNAME . 25
#+TEXT . 117, 126
#+TITLE . 117, 126
#+TODO . 45
#+TYP TODO . 45
#+XSLT . 126

A
abbreviation, links . 39
acknowledgments . 220
action, for publishing . 158
activation . 3
active region 10, 20, 128, 129, 135, 139, 142
add-on packages . 204
add-ons, context-sensitive commands 206
agenda . 94
agenda dispatcher . 93
agenda files . 92
agenda files, removing buffers 111
agenda views . 92
agenda views, custom . 111
agenda views, exporting 111, 113, 114
agenda views, user-defined . 211
agenda, column view . 115
agenda, pipe . 213
agenda, with block views . 112
align, STARTUP keyword 195
alignment in tables . 21
anniversaries, from BBDB . 95
API, for mapping . 216
API, for properties . 66, 214
appointment . 67, 96
appointment reminders . 96
‘appt.el’ . 96
archive locations . 90
archiving . 90
ASCII export . 128
Atom feeds . 88
attachments . 87
author . 3
author info, in export . 127
autoload . 3

Concept index 225

B
babel, languages . 169
babel, library of . 169
backtrace of an error . 4
Baur, Steven L. 201
BBDB links . 35
BBDB, anniversaries . 95
block agenda . 112
blocking, of checkboxes . 52
blocks, folding . 15
bold text, markup rules . 119
Boolean logic, for tag/property searches 97
bug reports . 3

C
C-c C-c, overview . 197
‘calc’ package . 23
‘calc.el’ . 200
calculations, in tables . 20, 23
calendar commands, from agenda 110
calendar integration . 95
calendar, for selecting date . 70
capture . 82
category . 101
category filtering, in agenda 105
category, require for tags/property match 98
‘cdlatex.el’ . 200
CDLATEX . 125
checkbox blocking . 52
checkbox statistics . 52
checkboxes . 51
checkboxes and TODO dependencies 46
children, subtree visibility state 6
clean outline view . 197
clocking time . 74
clocktable, dynamic block . 76
code block, batch execution 189
code block, editing . 166
code block, evaluating . 168
code block, exporting . 166
code block, extracting source code 167
code block, header arguments 170
code block, key bindings . 188
code block, languages . 169
code block, library . 169
code block, noweb reference 188
code block, results of evaluation 186
code block, structure . 165
code line references, markup rules 119
code text, markup rules . 119
column formula . 28
column view, for properties . 62
column view, in agenda . 115
column, of field coordinates . 24
commands, in agenda buffer 102
comment lines . 119
completion, of dictionary words 191

completion, of file names . 38
completion, of link abbreviations 191
completion, of links . 37
completion, of option keywords 45, 126, 191
completion, of property keys 191
completion, of tags . 54, 191
completion, of TEX symbols 191
completion, of TODO keywords 43, 191
constants, in calculations . 25
‘constants.el’ . 200
constcgs, STARTUP keyword 196
constSI, STARTUP keyword 196
content, STARTUP keyword 7, 195
contents, global visibility state 7
context-sensitive commands, hooks 206
convert . 148
converter . 148
coordinates, of field . 24
copying, of subtrees . 8
Countdown timer . 81
creating timestamps . 68
CSS, for HTML export . 132
‘CUA.el’ . 201
Cui, Baoqiu . 139
custom agenda views . 111
custom date/time format . 71
custom search strings . 41
customization . 193
customtime, STARTUP keyword 196
cutting, of subtrees . 8
cycling, in plain lists . 13
cycling, of agenda files . 92
cycling, of TODO states . 42
cycling, visibility . 6

D
daily agenda . 94
date format, custom . 71
date range . 68
date stamp . 67
date stamps . 67
date tree . 82
date, reading in minibuffer . 69
dates . 67
Davison, Dan . 165
DEADLINE keyword . 71
deadlines . 67
debugging, of table formulas 30
demotion, of subtrees . 8
dependencies, of TODO states 46
diary entries, creating from agenda 110
diary integration . 95
dictionary word completion 191
directories, for publishing . 157
dispatcher, for export commands 128
dispatching agenda commands 93
display changing, in agenda 103

Concept index 226

doc, docx, rtf . 148
DocBook export . 139
DocBook recursive sections 140
document structure . 6
document title, markup rules 117
Dominik, Carsten . 200
DONE, final TODO keyword 45
drawer, for properties . 58
drawer, for state change recording 47
drawers . 14
Duration, computing . 27
dvipng . 132, 146
dynamic blocks . 210
dynamic indentation . 197

E
editing tables . 18
editing, of table formulas . 28
effort estimates . 79
effort filtering, in agenda . 105
Elisp links . 35
emacsserver . 89
embedding images in ODT 144
emphasized text . 127
entitiesplain, STARTUP keyword 196
entitiespretty, STARTUP keyword 196
evaluate time range . 69
even, STARTUP keyword . 196
export, OpenDocument . 142
export, selective by tags or TODO keyword . . . 126
exporting . 126
exporting agenda views 111, 114
exporting, not . 119
extended TODO keywords . 43
external archiving . 90
external links . 35
external links, in HTML export 131

F
faces, for TODO keywords . 45
FAQ . 1
feedback . 3
field coordinates . 24
field formula . 27
field references . 23
file links . 35
file links, searching . 40
file name completion . 38
files for agenda . 92
files, adding to agenda list . 92
files, selecting for publishing 158
filtering, by tag category and effort, in agenda

. 105
fixed-width sections . 127
fnadjust, STARTUP keyword 196
fnauto, STARTUP keyword 196

fnconfirm, STARTUP keyword 196
fninline, STARTUP keyword 196
fnlocal, STARTUP keyword 196
fnplain, STARTUP keyword 196
fnprompt, STARTUP keyword 196
folded, subtree visibility state 6
folding, sparse trees . 11
following links . 38
‘footnote.el’ . 118, 201
footnotes . 15, 127
footnotes, markup rules . 118
format specifier . 25
format, of links . 34
formatting source code, markup rules 120
formula debugging . 30
formula editing . 28
formula syntax, Calc . 25
formula, for individual table field 27
formula, for range of fields . 27
formula, for table column . 28
formula, in tables . 20
Freemind export . 154

G
Gillespie, Dave . 200
global cycling . 7
global key bindings . 3
global TODO list . 96
global visibility states . 7
Gnus links . 35
graph, in tables . 32
grouping columns in tables . 22
Guerry, Bastien . 134

H
habits . 48
hacking . 204
header, for LATEX files . 135
headings and sections, markup rules 117
headline levels . 127
headline levels, for exporting 129, 130, 135
headline navigation . 8
headline tagging . 54
headline, promotion and demotion 8
headlines . 6
hide text . 6
hideblocks, STARTUP keyword 15, 196
hidestars, STARTUP keyword 196
hiding leading stars . 197
history . 220
hooks . 204
horizontal rules, markup rules 119
HTML entities . 122
HTML export . 129
HTML export, CSS . 132
HTML, and Orgtbl mode . 209

Concept index 227

hyperlinks . 34
hyperlinks, adding new types 204

I
iCalendar export . 155
identify, ImageMagick . 145
idle, resolve, dangling . 78
images, embedding in ODT 144
images, inline in DocBook . 141
images, inline in HTML . 131
images, inline in LATEX . 136
images, inlining . 38
‘imenu.el’ . 200
in-buffer settings . 193
inactive timestamp . 68
include files, markup rules . 121
indent, STARTUP keyword 195
index entries, for publishing 122
index, in a publishing project 161
Info links . 35
inheritance, of properties . 61
inheritance, of tags . 54
inlined images, markup rules 119
inlineimages, STARTUP keyword 38, 195
inlining images . 38
inlining images in DocBook 141
inlining images in HTML . 131
inlining images in LATEX . 136
inserting links . 37
insertion, of templates . 191
installation . 2
internal links . 34
internal links, in HTML export 131
introduction . 1
iPhone . 218
IRC links . 35
italic text, markup rules . 119

J
jumping, to headlines . 8

K
K, Jambunathan . 142
key bindings, global . 3
keyword options . 45

L
LATEX class . 135
LATEX entities . 122
LATEX export . 134
LATEX fragments . 123, 127
LATEX fragments, markup rules 122
LATEX fragments, preview . 124
LATEX header . 135

LATEX interpretation . 122
LATEX sectioning structure . 135
LATEX, and Orgtbl mode . 207
Latin-1 export . 128
level, require for tags/property match 98
LibreOffice . 142
line-break preservation . 127
link abbreviations . 39
link abbreviations, completion of 191
link completion . 37
link format . 34
links, external . 35
links, finding next/previous . 39
links, handling . 36
links, in HTML export . 131
links, internal . 34
links, publishing . 160
links, radio targets . 35
links, returning to . 39
Lisp forms, as table formulas 26
lists, in other modes . 206
lists, markup rules . 118
lists, ordered . 12
lists, plain . 12
literal examples, markup rules 119
logdone, STARTUP keyword 195
logging, of progress . 47
lognoteclock-out, STARTUP keyword 195
lognotedone, STARTUP keyword 195
lognoteredeadline, STARTUP keyword 195
lognoterefile, STARTUP keyword 195
lognoterepeat, STARTUP keyword 195
lognotereschedule, STARTUP keyword 195
logredeadline, STARTUP keyword 195
logrefile, STARTUP keyword 195
logrepeat, STARTUP keyword 195
logreschedule, STARTUP keyword 195
Ludlam, Eric M. 200

M
macro replacement, during export 122
maintainer . 3
mapping entries, API . 216
mark ring . 39
marking characters, tables . 31
match view . 97
matching, of properties . 97
matching, of tags . 97
matching, tags . 54
math symbols . 122
MathJax . 132
MathML . 146
MH-E links . 35
mind map . 154
minor mode for structure editing 17
minor mode for tables . 22
MobileOrg . 218

Concept index 228

mode, for ‘calc’ . 25
motion commands in agenda 102
motion, between headlines . 8

N
name, of column or field . 25
named references . 25
names as TODO keywords . 43
narrow columns in tables . 21
noalign, STARTUP keyword 195
nofnadjust, STARTUP keyword 196
nofninline, STARTUP keyword 196
nohideblocks, STARTUP keyword 15, 196
noindent, STARTUP keyword 195
noinlineimages, STARTUP keyword 38, 195
nologdone, STARTUP keyword 195
nolognoteclock-out, STARTUP keyword 195
nologredeadline, STARTUP keyword 195
nologrefile, STARTUP keyword 195
nologrepeat, STARTUP keyword 195
nologreschedule, STARTUP keyword 195

O
occur, command . 11
odd, STARTUP keyword . 196
odd-levels-only outlines . 197
ODT . 142
OpenDocument . 142
option keyword completion 191
options, for custom agenda views 112
options, for customization . 193
options, for export . 126
options, for publishing . 159
ordered lists . 12
Org mode, turning on . 3
org-agenda, command . 94
‘org-crypt.el’ . 202
org-decrypt-entry . 202
org-export-with-tasks . 126
org-hide-block-startup . 196
org-list-insert-radio-list . 210
org-modules . 142
org-odt.el . 142
org-pretty-entities . 196
org-publish-project-alist . 157
Orgstruct mode . 17
Orgtbl mode . 22, 206
Ota, Takaaki . 201
Outline mode . 6
outline tree . 6
outlines . 6
overview, global visibility state 7
overview, STARTUP keyword 7, 195

P
packages, interaction with other 200
paragraphs, markup rules . 118
pasting, of subtrees . 8
PDF export . 134, 139
per-file keywords . 45
plain lists . 12
plain text external links . 36
plot tables using Gnuplot . 32
presentation, of agenda items 100
print edition . 1
printing sparse trees . 11
priorities . 50
priorities, of agenda items . 102
progress logging . 47
Project management . 152
projects, for publishing . 157
promotion, of subtrees . 8
properties . 58
properties, API . 66, 214
properties, column view . 62
properties, inheritance . 61
properties, searching . 60
properties, special . 60
property EXPORT FILE NAME . . . 135, 139, 142
property syntax . 58
property, + . 59
property, ALL . 58
property, ARCHIVE . 61, 90
property, ATTACH DIR . 88
property, ATTACH DIR INHERIT 88
property, CATEGORY . 61, 101
property, COLUMNS . 61, 194
property, COOKIE DATA 51, 52
property, CUSTOM ID . 34, 36
property, DESCRIPTION . 156
property, Effort . 79
property, EXPORT FILE NAME 128, 129
property, EXPORT TITLE 117
property, ID . 36, 65, 155
property, LATEX CLASS . 135
property, LATEX CLASS OPTIONS 135
property, LOCATION . 156
property, LOG INTO DRAWER 47, 74
property, LOGGING . 48, 61
property, ORDERED 46, 52, 53
property, special, ALLTAGS 60
property, special, BLOCKED 60
property, special, CATEGORY 60
property, special, CLOCKSUM 60, 116
property, special, CLOSED . 60
property, special, DEADLINE 60
property, special, FILE . 60
property, special, ITEM . 60
property, special, PRIORITY 60
property, special, SCHEDULED 60
property, special, TAGS . 60
property, special, TIMESTAMP 60

Concept index 229

property, special, TIMESTAMP IA 60
property, special, TODO . 60
property, SUMMARY . 156
property, VISIBILITY . 7
property: CLOCK MODELINE TOTAL 75
property: LAST REPEAT . 75
protocols, for external access 89
publishing . 157

Q
query editing, in agenda . 105
quoted HTML tags . 127

R
radio lists . 210
radio tables . 206
radio targets . 35
range formula . 27
range references . 24
ranges, time . 67
recomputing table fields . 30
references . 23
references, named . 25
references, remote . 25
references, to a different table 25
references, to fields . 23
references, to ranges . 24
refiling notes . 89
region, active 10, 20, 128, 129, 135, 139, 142
regular expressions, with tags search 98
relative timer . 80
‘remember.el’ . 200
reminders . 96
remote editing, bulk, from agenda 109
remote editing, from agenda 107
remote editing, undo . 107
remote references . 25
repeated tasks . 73
report, of clocked time . 76
resolve idle time . 78
RMAIL links . 35
Rose, Sebastian . 133
row, of field coordinates . 24
RSS feeds . 88
rsync . 162

S
SCHEDULED keyword . 71
scheduling . 67
Schulte, Eric . 165
Scripts, for agenda processing 213
search option in file links . 40
search strings, custom . 41
search view . 99
searching for tags . 56

searching, for text . 99
searching, of properties . 60
section-numbers . 127
sectioning structure, for LATEX export 135
setting tags . 54
SHELL links . 35
shift-selection-mode . 13
shift-selection-mode . 201
show all, command . 7
show all, global visibility state 7
show hidden text . 6
showall, STARTUP keyword 7, 195
showeverything, STARTUP keyword 7, 195
showstars, STARTUP keyword 196
sitemap, of published pages 160
sorting, of agenda items . 102
sorting, of subtrees . 8
source code, batch execution 189
source code, block header arguments 170
source code, block structure 165
source code, editing . 166
source code, evaluating . 168
source code, exporting . 166
source code, extracting . 167
source code, inline . 165
source code, language . 165
source code, languages . 169
source code, library . 169
source code, noweb reference 188
source code, results of evaluation 186
source code, switches . 166
source code, working with . 165
sparse tree, for deadlines . 73
sparse tree, for TODO . 42
sparse tree, tag based . 54
sparse trees . 11
Special characters in DocBook export 141
special keywords . 193
special strings . 127
special symbols . 122
speed keys . 192
‘speedbar.el’ . 200
spreadsheet capabilities . 23
square brackets, around links 36
statistics, for checkboxes . 52
statistics, for TODO items . 51
storing links . 36
Storm, Kim. F. 201
strike-through text, markup rules 119
structure editing . 8
structure of document . 6
styles, custom . 143, 148
sublevels, inclusion into tags match 54
sublevels, inclusion into TODO list 96
subscript . 123
subtree cycling . 6
subtree visibility states . 6
subtree, cut and paste . 8

Concept index 230

subtree, subtree visibility state 6
subtrees, cut and paste . 8
summary . 1
superscript . 123
syntax, noweb . 188
syntax, of formulas . 25

T
table editor, built-in . 18
table editor, ‘table.el’ . 201
table of contents . 127
table of contents, markup rules 117
‘table.el’ . 200, 201
tables . 18, 127
tables, in DocBook export 140, 144
tables, in HTML . 131
tables, in LATEX export . 136
tables, in ODT export . 150
tables, in other modes . 206
tables, markup rules . 119
tag completion . 191
tag filtering, in agenda . 105
tag inheritance . 54
tag searches . 56
tags . 54
tags view . 97
tags, setting . 54
tangling . 167
targets, for links . 34
targets, radio . 35
TaskJuggler export . 152
tasks, breaking down . 51
tasks, repeated . 73
template insertion . 191
template, custom . 143, 148
templates, for Capture . 83
TEX interpretation . 122
TEX macros . 122, 127
TEX symbol completion . 191
TEX-like syntax for sub- and superscripts 127
text areas, in HTML . 132
text before first headline, markup rules 117
text search . 99
thanks . 220
time clocking . 74
time format, custom . 71
time grid . 101
time info, in export . 127
Time, computing . 27
time, reading in minibuffer . 69
time-of-day specification . 101
time-sorted view . 99
timeline, single file . 99
timerange . 68
times . 67
timestamp . 67
timestamp, inactive . 68

timestamp, with repeater interval 67
timestamps . 67
timestamps, creating . 68
TODO dependencies . 46
TODO items . 42
TODO keyword matching . 96
TODO keyword matching, with tags search 98
TODO keyword sets . 44
TODO keywords completion 191
TODO list, global . 96
TODO types . 43
TODO workflow . 43
transient mark mode . 10, 20
transient-mark-mode 128, 129, 135, 139, 142
translator function . 209
trees, sparse . 11
trees, visibility . 6
tty key bindings . 199
types as TODO keywords . 43

U
underlined text, markup rules 119
undoing remote-editing events 107
unison . 162
‘unoconv’ . 142
updating, table . 30
URL links . 35
USENET links . 35
UTF-8 export . 128

V
variables, for customization 193
vectors, in table calculations 25
verbatim text, markup rules 119
‘viper.el’ . 202
visibility cycling . 6
visibility cycling, drawers . 14
visible text, printing . 11
VM links . 35

W
WANDERLUST links . 35
weekly agenda . 94
Wiegley, John . 200
‘windmove.el’ . 202
workflow states as TODO keywords 43

X
XEmacs . 2
XOXO export . 155

Concept index 231

Y
‘yasnippet.el’ . 202

Z

zip . 142

Key index 232

Key index

$
$. 107

%
% . 109

’
' . 125

+
+ . 108

,
, . 107

-
- . 108

.

. 103

/
/ . 105

:
: . 107

;
; . 81

<
< . 64
< . 70
< . 93, 105
<TAB> . 18

>
> . 64
> . 70
> . 93
> . 108

?
? . 219

[
[. 104, 106

]
] . 106

^
^ . 125

_ . 125

‘
` . 125

{
{ . 106

}
} . 106

\
\\ . 106

A
a . 64
a . 107
A . 103

B
b . 103
B . 109

C
c . 110
C . 110
C-# . 30
C-' . 92
C-, . 92

Key index 233

C-_ . 107
C-0 C-c C-w . 89
C-c ! . 68
C-c # . 53
C-c $. 90
C-c % . 39
C-c & . 39
C-c ' . 29
C-c ' . 121, 166
C-c ' . 201
C-c * . 10
C-c * . 14
C-c * . 30
C-c + . 20
C-c , . 50
C-c - . 14, 19
C-c . 68
C-c / . 11
C-c / . 202
C-c / a . 73
C-c / b . 73
C-c / d . 72
C-c / m . 57, 60
C-c / p . 61
C-c / r . 11
C-c / t . 42
C-c ; . 119
C-c < . 68
C-c = . 28
C-c > . 68
C-c ? . 28
C-c [. 92
C-c] . 92
C-c ^ . 10
C-c ^ . 14, 19
C-c ` . 20
C-c { . 29, 125
C-c } . 29
C-c \ . 60
C-c \\ . 57
C-c | . 18
C-c | . 21
C-c ~ . 201
C-c a ! . 100
C-c a # . 100
C-c a ? . 219
C-c a a . 94
C-c a C . 111
C-c a e . 115
C-c a L . 99
C-c a m . 57, 60, 97
C-c a M . 57, 60, 97
C-c a s . 99
C-c a t . 42
C-c a t . 96
C-c a T . 96
C-c c . 82
C-c c C . 83

C-c C-* . 14
C-c C-a . 87, 108
C-c C-a a . 87
C-c C-a c . 87
C-c C-a d . 88
C-c C-a D . 88
C-c C-a f . 88
C-c C-a F . 88
C-c C-a i . 88
C-c C-a l . 87
C-c C-a m . 87
C-c C-a n . 87
C-c C-a o . 88
C-c C-a O . 88
C-c C-a s . 88
C-c C-a z . 87
C-c C-b . 8
C-c C-b . 138
C-c C-c . 14, 16, 18
C-c C-c . 29
C-c C-c . 30
C-c C-c . 52, 54
C-c C-c . 59
C-c C-c . 64, 65
C-c C-c . 68, 75
C-c C-c . 76, 82
C-c C-c 124, 168, 188, 197, 201
C-c C-c c . 60
C-c C-c d . 59
C-c C-c D . 60
C-c C-c s . 59
C-c C-d . 72, 108
C-c C-e . 128
C-c C-e a . 128
C-c C-e A . 129
C-c C-e b . 129
C-c C-e c . 155
C-c C-e d . 135
C-c C-e D . 139
C-c C-e E . 163
C-c C-e F . 163
C-c C-e h . 129
C-c C-e H . 130
C-c C-e i . 155
C-c C-e I . 155
C-c C-e j . 153
C-c C-e J . 153
C-c C-e l . 135
C-c C-e L . 135
C-c C-e m . 154
C-c C-e n . 129
C-c C-e N . 129
C-c C-e o . 142
C-c C-e O . 142
C-c C-e p . 135
C-c C-e P . 163
C-c C-e R . 130
C-c C-e t . 126

Key index 234

C-c C-e u . 129
C-c C-e U . 129
C-c C-e v . 11, 128
C-c C-e V . 139
C-c C-e v D . 140
C-c C-e v x . 155
C-c C-e x . 155
C-c C-e X . 163
C-c C-f . 8
C-c C-j . 8
C-c C-k . 7, 83
C-c C-l . 37
C-c C-n . 8
C-c C-o . 17, 38, 68, 103, 188
C-c C-p . 8
C-c C-q . 29, 54
C-c C-r . 7, 29
C-c C-s . 72, 108
C-c C-t . 42, 75
C-c C-u . 8
C-c C-v a . 189
C-c C-v b . 189
C-c C-v c . 189
C-c C-v C-a . 189
C-c C-v C-b . 189
C-c C-v C-c . 189
C-c C-v C-d . 189
C-c C-v C-e . 189
C-c C-v C-f . 189
C-c C-v C-g . 189
C-c C-v C-h . 189
C-c C-v C-i . 189
C-c C-v C-I . 189
C-c C-v C-j . 189
C-c C-v C-l . 189
C-c C-v C-n . 189
C-c C-v C-o . 189
C-c C-v C-p . 189
C-c C-v C-r . 189
C-c C-v C-s . 189
C-c C-v C-t . 189
C-c C-v C-u . 189
C-c C-v C-v . 189
C-c C-v C-x . 189
C-c C-v C-z . 189
C-c C-v d . 189
C-c C-v e . 189
C-c C-v f . 189
C-c C-v g . 189
C-c C-v h . 189
C-c C-v i . 169, 189
C-c C-v I . 189
C-c C-v j . 189
C-c C-v l . 189
C-c C-v n . 189
C-c C-v o . 189
C-c C-v p . 189
C-c C-v r . 189

C-c C-v s . 189
C-c C-v t . 167, 189
C-c C-v u . 189
C-c C-v v . 189
C-c C-v x . 189
C-c C-v z . 189
C-c C-w . 10, 82, 89
C-c C-w . 107
C-c C-x , . 80
C-c C-x - . 80
C-c C-x . 80
C-c C-x ; . 81
C-c C-x < . 93
C-c C-x > . 93, 105
C-c C-x \ . 123
C-c C-x 0 . 80
C-c C-x a . 91
C-c C-x a . 107
C-c C-x A . 91
C-c C-x A . 107
C-c C-x b . 7
C-c C-x b . 103
C-c C-x c . 10
C-c C-x C-a . 90
C-c C-x C-a . 107
C-c C-x C-b . 52
C-c C-x C-c . 63
C-c C-x C-c . 105, 115
C-c C-x C-d . 76
C-c C-x C-e . 75
C-c C-x C-e . 79
C-c C-x C-i . 74
C-c C-x C-j . 75
C-c C-x C-k . 72
C-c C-x C-l . 124
C-c C-x C-n . 39
C-c C-x C-o . 75
C-c C-x C-p . 39
C-c C-x C-r . 76
C-c C-x C-s . 90
C-c C-x C-s . 107
C-c C-x C-t . 71
C-c C-x C-u . 65, 76, 211
C-c C-x C-v . 38
C-c C-x C-w . 9, 20
C-c C-x C-x . 75
C-c C-x C-y . 9, 20
C-c C-x e . 79
C-c C-x f . 16
C-c C-x g . 88
C-c C-x G . 88
C-c C-x i . 65
C-c C-x M-w . 9, 20
C-c C-x o . 46, 53
C-c C-x p . 59, 171
C-c C-x v . 7
C-c C-y . 69
C-c C-y . 75

Key index 235

C-c C-z . 15, 108
C-c l . 36
C-c l . 121
C-c RET . 19
C-k . 107
C-RET . 9
C-S-LEFT . 44, 107
C-S-RET . 9
C-S-RIGHT . 44, 107
C-S-UP/DOWN . 75
C-TAB . 91
C-u C-c ! . 68
C-u C-c * . 30
C-u C-c . 68
C-u C-c = . 27, 28
C-u C-c c . 83
C-u C-c C-c . 30
C-u C-c C-l . 38
C-u C-c C-t . 42
C-u C-c C-w . 89
C-u C-c C-x , . 80
C-u C-c C-x a . 91
C-u C-c C-x C-s . 90
C-u C-c C-x C-u . 65, 76, 211
C-u C-u C-c * . 30
C-u C-u C-c = . 28
C-u C-u C-c c . 83
C-u C-u C-c C-c . 30
C-u C-u C-c C-e . 128
C-u C-u C-c C-t . 44
C-u C-u C-c C-w . 89
C-u C-u C-u C-c C-t . 46
C-u C-u C-u TAB . 7
C-u C-u TAB . 8
C-up . 188
C-v . 70
C-x C-s . 29, 105
C-x C-w . 111, 114
C-x n b . 10
C-x n s . 10
C-x n w . 10
C-y . 9

D
d . 103
D . 104

E
e . 64
E . 104

F
f . 103
F . 103

G
g . 64, 105
G . 104

H
H . 110

I
i . 110
I . 109

J
j . 103
J . 103
J . 109

K
k . 108
k a . 72
k s . 72

L
l . 104
L . 102

M
m . 109
M . 110
M-a . 19
M-DOWN . 13, 19
M-DOWN . 29
M-down . 188
M-e . 19
M-g M-n . 11
M-g M-p . 11
M-g n . 11
M-g p . 11
M-LEFT . 9, 13, 19
M-RET . 8
M-RET . 13
M-RET . 20
M-RET . 80
M-RIGHT . 9, 13, 19
M-S-DOWN . 9, 19
M-S-DOWN . 29
M-S-LEFT . 9, 13, 19, 70
M-S-RET . 9, 13
M-S-RET . 53
M-S-RIGHT . 9, 13, 19, 70
M-S-UP . 9, 19
M-S-UP . 29
M-TAB . 29

Key index 236

M-TAB . 45, 54, 59, 191
M-UP . 13, 19
M-UP . 29
M-v . 70
M-x org-iswitchb . 93
mouse-1 . 17, 38, 70
mouse-2 . 17, 38, 102
mouse-3 . 38, 102

N
n . 64
n . 102

O
o . 103
O . 109

P
p . 64
p . 102
P . 107

Q
q . 64, 111

R
r . 64
r . 96, 104
R . 104
RET . 19, 38, 56, 70, 102

S
s . 105
S . 110
S-DOWN . 13, 29
S-DOWN . 50
S-DOWN . 68, 70, 108
S-LEFT 14, 29, 42, 44, 59, 64, 68, 70
S-LEFT . 76
S-LEFT . 108
S-M-LEFT . 64
S-M-RET . 43
S-M-RIGHT . 64
S-RET . 20
S-RIGHT 14, 29, 42, 44, 59, 64, 68, 70

S-RIGHT . 76
S-RIGHT . 108
S-TAB . 7
S-TAB . 19
S-UP . 29
S-UP . 50
S-UP . 68, 70, 108
SPC . 56, 102

T
t . 107
T . 107
TAB . 6, 9
TAB . 13, 29
TAB . 56, 102, 125

U
u . 109
U . 109

V
v . 64
v [. 104
v a . 104
v A . 104
v c . 104
v d . 103
v E . 104
v l . 104
v L . 104
v m . 103
v R . 104
v SPC . 103
v w . 103
v y . 103

W
w . 103

X
x . 111
X . 109

Z
z . 108

Command and function index 237

Command and function index

L
lisp-complete-symbol . 29

N
next-error . 11

O
org-agenda-action . 108
org-agenda-add-note . 108
org-agenda-archive . 107
org-agenda-archive-default-with-

confirmation . 107
org-agenda-archive-to-archive-sibling . . . 107
org-agenda-archives-mode 104
org-agenda-archives-mode 'files 104
org-agenda-bulk-action . 109
org-agenda-bulk-mark . 109
org-agenda-bulk-mark-regexp 109
org-agenda-bulk-remove-all-marks 109
org-agenda-bulk-unmark . 109
org-agenda-clock-cancel 109
org-agenda-clock-goto . 103
org-agenda-clock-goto . 109
org-agenda-clock-in . 109
org-agenda-clock-out . 109
org-agenda-clockreport-mode 104
org-agenda-columns . 105, 115
org-agenda-convert-date 110
org-agenda-date-prompt . 108
org-agenda-day-view . 103
org-agenda-deadline . 108
org-agenda-diary-entry . 110
org-agenda-do-date-earlier 108
org-agenda-do-date-later 108
org-agenda-earlier . 103
org-agenda-entry-text-mode 104
org-agenda-exit . 111
org-agenda-file-to-front 92
org-agenda-filter-by-category 105
org-agenda-filter-by-tag 105
org-agenda-filter-by-tag-refine 106
org-agenda-follow-mode . 103
org-agenda-goto . 102
org-agenda-goto-calendar 110
org-agenda-goto-date . 103
org-agenda-goto-today . 103
org-agenda-holidays . 110
org-agenda-kill . 107
org-agenda-later . 103
org-agenda-list . 94
org-agenda-list-stuck-projects 100
org-agenda-log-mode . 104

org-agenda-manipulate-query-add 104
org-agenda-month-view . 103
org-agenda-next-line . 102
org-agenda-open-link . 103
org-agenda-phases-of-moon 110
org-agenda-previous-line 102
org-agenda-priority-down 108
org-agenda-priority-up . 108
org-agenda-quit . 111
org-agenda-recenter . 102
org-agenda-redo . 104
org-agenda-redo . 105
org-agenda-refile . 107
org-agenda-remove-restriction-lock . . . 93, 105
org-agenda-reset-view . 103
org-agenda-schedule . 108
org-agenda-set-restriction-lock 93
org-agenda-set-tags . 107
org-agenda-show-and-scroll-up 102
org-agenda-show-priority 107
org-agenda-show-tags . 107
org-agenda-sunrise-sunset 110
org-agenda-switch-to . 102
org-agenda-todo . 107
org-agenda-todo-nextset 107
org-agenda-todo-previousset 107
org-agenda-toggle-archive-tag 107
org-agenda-toggle-diary 104
org-agenda-toggle-time-grid 104
org-agenda-tree-to-indirect-buffer 103
org-agenda-undo . 107
org-agenda-week-view . 103
org-agenda-year-view . 103
org-archive-subtree . 90
org-archive-subtree-default 90
org-archive-to-archive-sibling 91
org-attach . 87, 108
org-attach-attach . 87
org-attach-delete-all . 88
org-attach-delete-one . 88
org-attach-new . 87
org-attach-open . 88
org-attach-open-in-emacs 88
org-attach-reveal . 88
org-attach-reveal-in-emacs 88
org-attach-set-directory 88
org-attach-set-inherit . 88
org-attach-sync . 87
org-backward-same-level . 8
org-beamer-select-environment 138
org-buffer-property-keys 215
org-calendar-goto-agenda 110
org-capture . 82
org-capture-finalize . 82
org-capture-kill . 83

Command and function index 238

org-capture-refile . 82
org-check-after-date . 73
org-check-before-date . 73
org-check-deadlines . 72
org-clock-cancel . 75
org-clock-display . 76
org-clock-goto . 75
org-clock-in . 74
org-clock-modify-effort-estimate 75
org-clock-modify-effort-estimate 79
org-clock-out . 75
org-clock-report . 76
org-clock-timestamps-up/down 75
org-clocktable-try-shift 76
org-clone-subtree-with-time-shift 10
org-columns . 63
org-columns-delete . 64
org-columns-edit-allowed 64
org-columns-edit-value . 64
org-columns-narrow . 64
org-columns-new . 64
org-columns-next-allowed-value 64
org-columns-previous-allowed-value 64
org-columns-quit . 64
org-columns-redo . 64
org-columns-set-tags-or-toggle 64
org-columns-show-value . 64
org-columns-widen . 64
org-compute-property-at-point 60
org-copy-subtree . 9
org-copy-visible . 7
org-cut-subtree . 9
org-cycle . 6, 9
org-cycle . 13
org-cycle-agenda-files . 92
org-date-from-calendar . 68
org-dblock-update 65, 76, 211
org-deadline . 72
org-delete-property . 59
org-delete-property-globally 60
org-demote . 217
org-demote-subtree . 9
org-do-demote . 9
org-do-promote . 9
org-edit-special . 201
org-entry-add-to-multivalued-property . . . 215
org-entry-delete . 215
org-entry-get . 215
org-entry-get-multivalued-property 215
org-entry-member-in-multivalued-property

. 215
org-entry-properties . 215
org-entry-put . 215
org-entry-put-multivalued-property 215
org-entry-remove-from-multivalued-property

. 215
org-evaluate-time-range . 69
org-evaluate-time-range . 75

org-export . 128
org-export-as-ascii . 128
org-export-as-ascii-to-buffer 129
org-export-as-docbook . 139
org-export-as-docbook-pdf-and-open 139
org-export-as-freemind . 154
org-export-as-html . 129
org-export-as-html-and-open 129
org-export-as-html-to-buffer 130
org-export-as-latex . 135
org-export-as-latex-to-buffer 135
org-export-as-latin1 . 129
org-export-as-latin1-to-buffer 129
org-export-as-odt . 142
org-export-as-odt-and-open 142
org-export-as-pdf . 135
org-export-as-pdf-and-open 135
org-export-as-taskjuggler 153
org-export-as-taskjuggler-and-open 153
org-export-as-utf8 . 129
org-export-as-utf8-to-buffer 129
org-export-as-xoxo . 155
org-export-icalendar-all-agenda-files . . . 155
org-export-icalendar-combine-agenda-files

. 155
org-export-icalendar-this-file 155
org-export-region-as-html 130
org-export-visible . 128
org-feed-goto-inbox . 88
org-feed-update-all . 88
org-force-cycle-archived 91
org-forward-same-level . 8
org-global-cycle . 7
org-goto . 8
org-goto-calendar . 68
org-insert-columns-dblock 65
org-insert-export-options-template 126
org-insert-heading . 8
org-insert-heading . 13, 80
org-insert-heading-respect-content 9
org-insert-link . 37
org-insert-property-drawer 59, 215
org-insert-todo-heading . 9
org-insert-todo-heading 43, 53
org-insert-todo-heading-respect-content . . . 9
org-map-entries . 216
org-mark-entry-for-agenda-action 72
org-mark-ring-goto . 39
org-mark-ring-push . 39
org-match-sparse-tree 57, 60
org-move-subtree-down . 9
org-move-subtree-up . 9
org-narrow-to-block . 10
org-narrow-to-subtree . 10
org-next-link . 39
org-occur . 11
org-open-at-point . 38, 68
org-paste-subtree . 9

Command and function index 239

org-previous-link . 39
org-priority . 50, 217
org-priority-down . 50
org-priority-up . 50
org-promote . 217
org-promote-subtree . 9
org-property-action . 59
org-property-next-allowed-value 59
org-property-previous-allowed-value 59
org-publish . 163
org-publish-all . 163
org-publish-current-file 163
org-publish-current-project 163
org-refile . 10, 89
org-refile-cache-clear . 89
org-refile-goto-last-stored 89
org-remove-file . 92
org-reveal . 7
org-save-all-org-buffers 105
org-schedule . 72
org-search-view . 99
org-set-effort . 79
org-set-property . 59
org-set-startup-visibility 8
org-set-tags-command . 54
org-show-todo-key . 42
org-sort-entries-or-items 10
org-sparse-tree . 11
org-speedbar-set-agenda-restriction 93
org-store-agenda-views . 115
org-store-link . 36
org-table-align . 18
org-table-beginning-of-field 19
org-table-copy-down . 20
org-table-copy-region . 20
org-table-create-or-convert-from-region . . 18
org-table-create-or-convert-from-region . . 21
org-table-create-with-table.el 201
org-table-cut-region . 20
org-table-delete-column . 19
org-table-edit-field . 20
org-table-edit-formulas . 29
org-table-end-of-field . 19
org-table-eval-formula 27, 28
org-table-export . 21
org-table-fedit-abort . 29
org-table-fedit-finish . 29
org-table-fedit-line-down 29
org-table-fedit-line-up . 29
org-table-fedit-lisp-indent 29
org-table-fedit-ref-down 29
org-table-fedit-ref-left 29
org-table-fedit-ref-right 29
org-table-fedit-ref-up . 29
org-table-fedit-scroll-down 29
org-table-fedit-scroll-up 29
org-table-fedit-toggle-ref-type 29
org-table-field-info . 28

org-table-hline-and-move 19
org-table-insert-column . 19
org-table-insert-hline . 19
org-table-insert-row . 19
org-table-iterate . 30
org-table-iterate-buffer-tables 30
org-table-kill-row . 19
org-table-move-column-left 19
org-table-move-column-right 19
org-table-move-row-down . 19
org-table-move-row-up . 19
org-table-next-field . 18
org-table-next-row . 19
org-table-paste-rectangle 20
org-table-previous-field 19
org-table-recalculate . 30
org-table-recalculate-buffer-tables 30
org-table-rotate-recalc-marks 30
org-table-sort-lines . 19
org-table-sum . 20
org-table-toggle-coordinate-overlays 29
org-table-toggle-formula-debugger 29
org-table-wrap-region . 20
org-tags-view . 57, 60, 97
org-time-stamp . 68
org-time-stamp-inactive . 68
org-timeline . 99
org-timer . 80
org-timer-item . 80
org-timer-start . 80
org-timestamp-down-day . 68
org-timestamp-down-down . 68
org-timestamp-up . 68
org-timestamp-up-day . 68
org-todo . 42, 75, 217
org-todo-list . 42
org-todo-list . 96
org-toggle-archive-tag . 91
org-toggle-checkbox . 52
org-toggle-heading . 10
org-toggle-inline-images 38
org-toggle-ordered-property 46, 53
org-toggle-tag . 217
org-toggle-time-stamp-overlays 71
org-tree-to-indirect-buffer 7
org-update-all-dblocks . 65
org-update-statistics-cookies 53
org-write-agenda . 111, 114
org-yank . 9
outline-next-visible-heading 8
outline-previous-visible-heading 8
outline-up-heading . 8

P
pcomplete . 59
previous-error . 11

Command and function index 240

S
show-all . 7
show-branches . 7

W

widen . 10

Variable index 241

Variable index

This is not a complete index of variables and faces, only the ones that are mentioned in
the manual. For a more complete list, use M-x org-customize RET and then click yourself
through the tree.

C
cdlatex-simplify-sub-super-scripts 125
constants-unit-system 25, 196

H
htmlize-output-type . 114

L
LATEX-verbatim-environments 208

O
org-adapt-indentation . 198
org-agenda-add-entry-text-maxlines 114
org-agenda-category-filter-preset 105
org-agenda-clock-consistency-checks 104
org-agenda-columns-add-appointments-to-

effort-sum . 80
org-agenda-confirm-kill 107
org-agenda-custom-commands . . 11, 111, 112, 113,

213
org-agenda-diary-file . 110
org-agenda-dim-blocked-tasks 46
org-agenda-entry-text-maxlines 104
org-agenda-exporter-settings 111, 114
org-agenda-files 92, 102, 155
org-agenda-log-mode-items 104
org-agenda-ndays . 94
org-agenda-overriding-header 212
org-agenda-prefix-format 100
org-agenda-restore-windows-after-quit 92
org-agenda-show-inherited-tags 107
org-agenda-skip-archived-trees 91
org-agenda-skip-function 211, 212, 216
org-agenda-skip-function-global 211
org-agenda-skip-scheduled-if-done 71
org-agenda-sorting-strategy 102
org-agenda-span . 94, 103
org-agenda-start-with-clockreport-mode . . 104
org-agenda-start-with-entry-text-mode . . . 104
org-agenda-start-with-follow-mode 103
org-agenda-tag-filter-preset 105
org-agenda-tags-column . 100
org-agenda-tags-todo-honor-ignore-options

. 97
org-agenda-text-search-extra-files . . . 94, 100
org-agenda-time-grid 101, 104
org-agenda-todo-ignore-deadlines 96

org-agenda-todo-ignore-scheduled 96
org-agenda-todo-ignore-timestamp 96
org-agenda-todo-ignore-with-date 96
org-agenda-todo-list-sublevels 51, 97
org-agenda-use-time-grid 101, 104
org-agenda-window-setup . 92
org-alphabetical-lists . 12
org-archive-default-command 90, 107
org-archive-location 90, 193
org-archive-save-context-info 90
org-attach-directory . 87
org-attach-method . 87
org-babel-default-header-args 170, 171
org-calc-default-modes . 25
org-clock-idle-time . 78
org-clock-into-drawer . 74
org-clock-modeline-total 75
org-clock-report-include-clocking-task . . 104
org-clocktable-defaults . 76
org-coderef-label-format 121
org-columns-default-format 63, 80, 105, 116
org-columns-skip-archived-trees 91
org-combined-agenda-icalendar-file 155
org-confirm-babel-evaluate 193
org-confirm-elisp-link-function 193
org-confirm-shell-link-function 193
org-create-file-search-functions 41
org-ctrl-c-ctrl-c-hook . 206
org-ctrl-k-protect-subtree 6
org-cycle-emulate-tab . 6
org-cycle-global-at-bob . 6
org-cycle-include-plain-lists 13
org-cycle-open-archived-trees 91
org-cycle-separator-lines 6
org-deadline-warning-days 71, 73
org-default-notes-file 82, 84
org-default-priority 50, 194
org-display-custom-times 71, 159
org-display-internal-link-with-indirect-

buffer . 38
org-disputed-keys . 201
org-done (face) . 45
org-drawers . 14, 194
org-effort-property . 79
org-empty-line-terminates-plain-lists 12
org-enable-table-editor . 18
org-enforce-todo-dependencies 46
org-entities . 122, 141
org-execute-file-search-functions 41
org-export-ascii-links-to-notes 129

Variable index 242

org-export-author-info 127, 130, 159
org-export-creator-info 127, 130, 159
org-export-date-timestamp-format 126
org-export-default-language 126, 159
org-export-docbook-default-image-attributes

. 141
org-export-docbook-doctype 141
org-export-docbook-inline-image-extensions

. 141
org-export-docbook-xsl-fo-proc-command . . 139
org-export-docbook-xslt-proc-command 139
org-export-docbook-xslt-stylesheet 139
org-export-email-info 127, 130, 159
org-export-exclude-tags 126, 159
org-export-headline-levels 117, 159
org-export-highlight-first-table-line . . . 159
org-export-html-expand . 159
org-export-html-extension 159
org-export-html-extra . 133
org-export-html-inline-images 131, 159
org-export-html-link-home 159
org-export-html-link-org-files-as-html . . 159
org-export-html-link-up 159
org-export-html-postamble 130, 159
org-export-html-postamble-format 130
org-export-html-preamble 130, 159
org-export-html-preamble-format 130
org-export-html-style 133, 159
org-export-html-style-default 133
org-export-html-style-extra 159
org-export-html-style-include-default . . . 133,

159
org-export-html-style-include-scripts . . . 159
org-export-html-table-tag 131, 159
org-export-html-tag-class-prefix 132
org-export-html-todo-kwd-class-prefix . . . 132
org-export-html-use-infojs 134
org-export-html-validation-link 130
org-export-html-with-timestamp 159
org-export-latex-classes 135
org-export-latex-default-class 135
org-export-latex-default-packages-alist

. 135
org-export-latex-packages-alist 135
org-export-odt-category-strings 147
org-export-odt-convert . 143
org-export-odt-convert-capabilities 148
org-export-odt-convert-process 148
org-export-odt-convert-processes 148
org-export-odt-create-custom-styles-for-

srcblocks . 147
org-export-odt-fontify-srcblocks 147
org-export-odt-pixels-per-inch 145
org-export-odt-preferred-output-format . . 142
org-export-odt-schema-dir 152
org-export-odt-styles-file 143
org-export-odt-table-styles 151
org-export-plist-vars . 127

org-export-preserve-breaks 159
org-export-publishing-directory 159
org-export-run-in-background 128
org-export-section-number-format 159
org-export-select-tags 126, 159
org-export-skip-text-before-1st-heading

. 117, 159
org-export-taskjuggler-default-reports . . 154
org-export-taskjuggler-project-tag 153
org-export-taskjuggler-resource-tag 153
org-export-time-stamp-file 127, 130, 159
org-export-with-archived-trees 91, 159
org-export-with-done-tasks 159
org-export-with-drawers 159
org-export-with-emphasize 159
org-export-with-fixed-width 159
org-export-with-footnotes 159
org-export-with-LaTeX-fragments 124, 159
org-export-with-priority 159
org-export-with-section-numbers 159
org-export-with-special-strings 159
org-export-with-sub-superscripts 123, 159
org-export-with-tables . 159
org-export-with-tags . 159
org-export-with-tasks . 159
org-export-with-TeX-macros 159
org-export-with-timestamps 159
org-export-with-toc 117, 159
org-export-with-todo-keywords 159
org-fast-tag-selection-include-todo 45
org-fast-tag-selection-single-key 56
org-file-apps . 38, 88
org-footnote-auto-adjust 16, 196
org-footnote-auto-label 16, 196
org-footnote-define-inline 16, 196
org-footnote-section . 16
org-format-latex-header 123
org-format-latex-options 124
org-from-is-user-regexp . 86
org-global-properties 59, 80
org-goto-auto-isearch . 8
org-goto-interface . 8
org-hide (face) . 199
org-hide-block-startup . 15
org-hide-leading-stars 195, 198
org-hierarchical-checkbox-statistics 52
org-hierarchical-todo-statistics 51
org-highest-priority 50, 194
org-icalendar-alarm-time 155
org-icalendar-categories 155
org-icalendar-include-body 156
org-icalendar-include-todo 155
org-icalendar-store-UID 155
org-icalendar-use-deadline 155
org-icalendar-use-scheduled 155
org-imenu-depth . 200
org-infojs-options . 134
org-insert-mode-line-in-empty-file 3

Variable index 243

org-irc-link-to-logs . 37
org-keep-stored-link-after-insertion 37
org-latex-low-levels . 135
org-latex-to-mathml-convert-command 146
org-latex-to-mathml-jar-file 146
org-link-abbrev-alist 39, 194
org-link-frame-setup . 38
org-link-to-org-use-id . 36
org-list-automatic-rules 13, 14, 51
org-list-demote-modify-bullet 13
org-list-indent-offset . 13
org-list-use-circular-motion 13
org-log-done . 48, 104, 195
org-log-into-drawer . 47, 108
org-log-note-clock-out 75, 195
org-log-refile . 89
org-log-repeat . 73, 195
org-log-states-order-reversed 47
org-lowest-priority . 50, 194
org-M-RET-may-split-line 8, 13
org-odd-levels-only 98, 195, 199, 212
org-outline-path-complete-in-steps 89
org-overriding-columns-format 116
org-plain-list-ordered-item-terminator . . . 12,

14
org-popup-calendar-for-date-prompt 70
org-priority-faces . 50
org-priority-start-cycle-with-default 50
org-property-allowed-value-functions 215
org-publish-project-alist 157, 160
org-publish-use-timestamps-flag 164
org-put-time-stamp-overlays 196
org-read-date-display-live 70
org-read-date-force-compatible-dates 70
org-read-date-prefer-future 69
org-refile-allow-creating-parent-nodes . . . 89
org-refile-targets . 89
org-refile-use-cache . 89
org-refile-use-outline-path 89
org-remove-highlights-with-change 11, 76
org-replace-disputed-keys 201
org-return-follows-link . 38
org-reverse-note-order . 89
org-show-entry-below . 11
org-show-following-heading 11
org-show-hierarchy-above 11
org-show-siblings . 11
org-sort-agenda-noeffort-is-high 105
org-sparse-tree-open-archived-trees 91
org-special-ctrl-a/e . 6
org-special-ctrl-k . 6
org-speed-commands-user 192

org-startup-align-all-tables 22, 195
org-startup-folded . 7, 195
org-startup-indented . 195
org-startup-with-inline-images 38, 195
org-store-link-functions 205
org-stuck-projects . 100
org-support-shift-select 13, 14, 201
org-table-auto-blank-field 18
org-table-copy-increment 20
org-table-duration-custom-format 27
org-table-export-default-format 21
org-table-formula . 194
org-table-formula-constants 25, 194, 200
org-table-use-standard-references 23, 28
org-tag-alist . 55, 196
org-tag-faces . 54
org-tag-persistent-alist 55
org-tags-column . 54
org-tags-exclude-from-inheritance 54
org-tags-match-list-sublevels . . . 54, 57, 60, 97
org-time-stamp-custom-formats 71
org-time-stamp-overlay-formats 196
org-time-stamp-rounding-minutes 68
org-todo (face) . 45
org-todo-keyword-faces . 45
org-todo-keywords 42, 43, 96, 197
org-todo-repeat-to-state 73
org-todo-state-tags-triggers 43
org-track-ordered-property-with-tag . . . 46, 53
org-treat-insert-todo-heading-as-state-

change . 9
org-treat-S-cursor-todo-selection-as-state-

change . 42
org-use-property-inheritance 61, 156, 171,

215
org-use-speed-commands . 192
org-use-tag-inheritance . 54
org-yank-adjusted-subtrees 9
org-yank-folded-subtrees . 9

P
parse-time-months . 70
parse-time-weekdays . 70
ps-landscape-mode . 114
ps-number-of-columns . 114

U
user-full-name . 126, 159
user-mail-address . 126, 159

	Introduction
	Summary
	Installation
	Activation
	Feedback
	Typesetting conventions used in this manual

	Document structure
	Outlines
	Headlines
	Visibility cycling
	Motion
	Structure editing
	Sparse trees
	Plain lists
	Drawers
	Blocks
	Footnotes
	The Orgstruct minor mode

	Tables
	The built-in table editor
	Column width and alignment
	Column groups
	The Orgtbl minor mode
	The spreadsheet
	References
	Formula syntax for Calc
	Emacs Lisp forms as formulas
	Durations and time values
	Field and range formulas
	Column formulas
	Editing and debugging formulas
	Updating the table
	Advanced features

	Org-Plot

	Hyperlinks
	Link format
	Internal links
	Radio targets

	External links
	Handling links
	Using links outside Org
	Link abbreviations
	Search options in file links
	Custom Searches

	TODO items
	Basic TODO functionality
	Extended use of TODO keywords
	TODO keywords as workflow states
	TODO keywords as types
	Multiple keyword sets in one file
	Fast access to TODO states
	Setting up keywords for individual files
	Faces for TODO keywords
	TODO dependencies

	Progress logging
	Closing items
	Tracking TODO state changes
	Tracking your habits

	Priorities
	Breaking tasks down into subtasks
	Checkboxes

	Tags
	Tag inheritance
	Setting tags
	Tag searches

	Properties and columns
	Property syntax
	Special properties
	Property searches
	Property Inheritance
	Column view
	Defining columns
	Scope of column definitions
	Column attributes

	Using column view
	Capturing column view

	The Property API

	Dates and times
	Timestamps, deadlines, and scheduling
	Creating timestamps
	The date/time prompt
	Custom time format

	Deadlines and scheduling
	Inserting deadlines or schedules
	Repeated tasks

	Clocking work time
	Clocking commands
	The clock table
	Resolving idle time

	Effort estimates
	Taking notes with a relative timer
	Countdown timer

	Capture - Refile - Archive
	Capture
	Setting up capture
	Using capture
	Capture templates
	Template elements
	Template expansion

	Attachments
	RSS feeds
	Protocols for external access
	Refiling notes
	Archiving
	Moving a tree to the archive file
	Internal archiving

	Agenda views
	Agenda files
	The agenda dispatcher
	The built-in agenda views
	The weekly/daily agenda
	The global TODO list
	Matching tags and properties
	Timeline for a single file
	Search view
	Stuck projects

	Presentation and sorting
	Categories
	Time-of-day specifications
	Sorting of agenda items

	Commands in the agenda buffer
	Custom agenda views
	Storing searches
	Block agenda
	Setting options for custom commands

	Exporting Agenda Views
	Using column view in the agenda

	Markup for rich export
	Structural markup elements
	Images and Tables
	Literal examples
	Include files
	Index entries
	Macro replacement
	Embedded LaTeX{}
	Special symbols
	Subscripts and superscripts
	LaTeX{} fragments
	Previewing LaTeX{} fragments
	Using CDLaTeX{} to enter math

	Exporting
	Selective export
	Export options
	The export dispatcher
	ASCII/Latin-1/UTF-8 export
	HTML export
	HTML export commands
	HTML preamble and postamble
	Quoting HTML tags
	Links in HTML export
	Tables
	Images in HTML export
	Math formatting in HTML export
	Text areas in HTML export
	CSS support
	JavaScript supported display of web pages

	LaTeX{} and PDF export
	LaTeX{} export commands
	Header and sectioning structure
	Quoting LaTeX{} code
	Tables in LaTeX{} export
	Images in LaTeX{} export
	Beamer class export

	DocBook export
	DocBook export commands
	Quoting DocBook code
	Recursive sections
	Tables in DocBook export
	Images in DocBook export
	Special characters in DocBook export

	OpenDocument Text export
	Pre-requisites for ODT export
	ODT export commands
	Extending ODT export
	Automatically exporting to other formats
	Converting between document formats

	Applying custom styles
	Applying custom styles - the easy way
	Using third-party styles and templates

	Links in ODT export
	Tables in ODT export
	Images in ODT export
	Math formatting in ODT export
	Working with LaTeX{} math snippets
	Working with MathML or OpenDocument formula files

	Labels and captions in ODT export
	Literal examples in ODT export
	Advanced topics in ODT export
	Configuring a document converter
	Working with OpenDocument style files
	Creating one-off styles
	Customizing tables in ODT export
	Validating OpenDocument XML

	TaskJuggler export
	TaskJuggler export commands
	Tasks
	Resources
	Export of properties
	Dependencies
	Reports

	Freemind export
	XOXO export
	iCalendar export

	Publishing
	Configuration
	The variable org-publish-project-alist
	Sources and destinations for files
	Selecting files
	Publishing action
	Options for the HTML/LaTeX{} exporters
	Links between published files
	Generating a sitemap
	Generating an index

	Uploading files
	Sample configuration
	Example: simple publishing configuration
	Example: complex publishing configuration

	Triggering publication

	Working with source code
	Structure of code blocks
	Editing source code
	Exporting code blocks
	Extracting source code
	Evaluating code blocks
	Library of Babel
	Languages
	Header arguments
	Using header arguments
	Specific header arguments
	:var
	:results
	:file
	:dir and remote execution
	:exports
	:tangle
	:mkdirp
	:comments
	:padline
	:no-expand
	:session
	:noweb
	:noweb-ref
	:noweb-sep
	:cache
	:sep
	:hlines
	:colnames
	:rownames
	:shebang
	:eval

	Results of evaluation
	Non-session
	:results value
	:results output

	Session
	:results value
	:results output

	Noweb reference syntax
	Key bindings and useful functions
	Batch execution

	Miscellaneous
	Completion
	Easy Templates
	Speed keys
	Code evaluation and security issues
	Customization
	Summary of in-buffer settings
	The very busy C-c C-c key
	A cleaner outline view
	Using Org on a tty
	Interaction with other packages
	Packages that Org cooperates with
	Packages that lead to conflicts with Org mode

	org-crypt.el

	Hacking
	Hooks
	Add-on packages
	Adding hyperlink types
	Context-sensitive commands
	Tables and lists in arbitrary syntax
	Radio tables
	A LaTeX{} example of radio tables
	Translator functions
	Radio lists

	Dynamic blocks
	Special agenda views
	Extracting agenda information
	Using the property API
	Using the mapping API

	MobileOrg
	Setting up the staging area
	Pushing to MobileOrg
	Pulling from MobileOrg

	History and acknowledgments
	Concept index
	Key index
	Command and function index
	Variable index

