
Bacula® is a registered trademark of Kern Sibbald

The Leading Open Source
Backup Solution

Bacula R© Console and Operators Guide

Kern Sibbald

November 6, 2018
This manual documents Bacula version 9.2.2 (06 November 2018)

Copyright c© 2000-2018, Kern Sibbald
Bacula R© is a registered trademark of Kern Sibbald.

This Bacula documentation by Kern Sibbald with contributions from many
others,

a complete list can be found in the License chapter. Creative Commons

Attribution-ShareAlike 4.0 International License
http://creativecommons.org/licenses/by-sa/4.0/

2

Contents

1 Bacula Console 1
1.1 Console Configuration . 1
1.2 Running the Console Program . 1
1.3 Stopping the Console Program . 2
1.4 Alphabetic List of Console Keywords . 2
1.5 Alphabetic List of Console Commands . 4
1.6 Special dot Commands . 15
1.7 Special At (@) Commands . 16
1.8 Running the Console from a Shell Script . 16
1.9 Adding Volumes to a Pool . 17

2 Baculum API and Web GUI Tools 19
2.1 Base Features . 19
2.2 General Requirements . 19
2.3 Installation Baculum API from rpm binary packages . 20

2.3.1 Add the Baculum rpm repository . 20
2.3.2 Installation for the Apache . 21
2.3.3 Installation for Lighttpd . 21
2.3.4 Access to bconsole via sudo for Apache and Lighttpd 21

2.4 Installation Baculum API from deb binary packages . 21
2.4.1 Add the Baculum deb repository . 22
2.4.2 Installation for Apache . 22
2.4.3 Installation for Lighttpd . 22
2.4.4 Access to bconsole via sudo for Apache and Lighttpd 23

2.5 Debugging your First Baculum API Login . 23
2.6 Installation Baculum Web from rpm binary packages . 23

2.6.1 Installation for the Apache . 23
2.6.2 Installation for Lighttpd . 23

2.7 Installation Baculum Web from deb binary packages . 24
2.7.1 Installation for Apache . 24
2.7.2 Installation for Lighttpd . 24

2.8 Running Baculum API and Web for the First Time . 24
2.8.1 Running Baculum API . 24
2.8.2 Running Baculum Web . 24

2.9 Installation wizards . 24
2.10 Baculum API endpoints . 28

2.10.1 Clients . 28
2.10.2 Storages . 28
2.10.3 Volumes . 28
2.10.4 Pools . 29
2.10.5 Jobs . 29
2.10.6 Bvfs . 32
2.10.7 Config . 34

2.11 Installation from the Source Tar File . 35
2.12 OAuth2 authorization . 36

2.12.1 Before running OAuth2 . 36
2.13 Screenshots . 37

i

ii CONTENTS

3 Bacula Copyright, Trademark, and Licenses 43
3.1 CC-BY-SA . 43
3.2 GPL . 43
3.3 LGPL . 43
3.4 Public Domain . 43
3.5 Trademark . 43
3.6 Fiduciary License Agreement . 43
3.7 Disclaimer . 44
3.8 Authors . 44

Chapter 1

Bacula Console

The Bacula Console (sometimes called the User Agent) is a program that allows the user or the System
Administrator, to interact with the Bacula Director daemon while the daemon is running.
The current Bacula Console comes in two versions: a shell interface (TTY style), and a QT GUI interface
(Bat). Both permit the administrator or authorized users to interact with Bacula. You can determine the
status of a particular job, examine the contents of the Catalog as well as perform certain tape manipulations
with the Console program.
Since the Console program interacts with the Director through the network, your Console and Director
programs do not necessarily need to run on the same machine.
In fact, a certain minimal knowledge of the Console program is needed in order for Bacula to be able to write
on more than one tape, because when Bacula requests a new tape, it waits until the user, via the Console
program, indicates that the new tape is mounted.

1.1 Console Configuration

When the Console starts, it reads a standard Bacula configuration file named bconsole.conf or bat.conf
in the case of the Bat QT Console version from the current directory unless you specify the -c command
line option (see below). This file allows default configuration of the Console, and at the current time,
the only Resource Record defined is the Director resource, which gives the Console the name and address
of the Director. For more information on configuration of the Console program, please see the Console
Configuration chapter (chapter 22 on page 239) of the Bacula Community Main Manual.

1.2 Running the Console Program

The console program can be run with the following options:

Usage: bconsole [-s] [-c config_file] [-d debug_level]

-c <file> set configuration file to file

-dnn set debug level to nn

-n no conio

-s no signals

-u <nn> set command execution timeout to <nn> seconds

-t test - read configuration and exit

-? print this message.

After launching the Console program (bconsole), it will prompt you for the next command with an asterisk
(*). Generally, for all commands, you can simply enter the command name and the Console program will
prompt you for the necessary arguments. Alternatively, in most cases, you may enter the command followed
by arguments. The general format is:

<command> <keyword1>[=<argument1>] <keyword2>[=<argument2>] ...

where command is one of the commands listed below; keyword is one of the keywords listed below (usually
followed by an argument); and argument is the value. The command may be abbreviated to the shortest
unique form. If two commands have the same starting letters, the one that will be selected is the one that
appears first in the help listing. If you want the second command, simply spell out the full command. None
of the keywords following the command may be abbreviated.
For example:

1

2 CHAPTER 1. BACULA CONSOLE

list files jobid=23

will list all files saved for JobId 23. Or:

show pools

will display all the Pool resource records.
The maximum command line length is limited to 511 characters, so if you are scripting the console, you may
need to take some care to limit the line length.

1.3 Stopping the Console Program

Normally, you simply enter quit or exit and the Console program will terminate. However, it waits until the
Director acknowledges the command. If the Director is already doing a lengthy command (e.g. prune), it
may take some time. If you want to immediately terminate the Console program, enter the .quit command.
There is currently no way to interrupt a Console command once issued (i.e. Ctrl-C does not work). However,
if you are at a prompt that is asking you to select one of several possibilities and you would like to abort the
command, you can enter a period (.), and in most cases, you will either be returned to the main command
prompt or if appropriate the previous prompt (in the case of nested prompts). In a few places such as where
it is asking for a Volume name, the period will be taken to be the Volume name. In that case, you will most
likely be able to cancel at the next prompt.

1.4 Alphabetic List of Console Keywords

Unless otherwise specified, each of the following keywords takes an argument, which is specified after the
keyword following an equal sign. For example:

jobid=536

Please note, this list is incomplete as it is currently in the process of being created and is not currently
totally in alphabetic order ...

restart Permitted on the python command, and causes the Python interpreter to be restarted. Takes no
argument.

all Permitted on the status and show commands to specify all components or resources respectively.

allfrompool Permitted on the update command to specify that all Volumes in the pool (specified on the
command line) should be updated.

allfrompools Permitted on the update command to specify that all Volumes in all pools should be updated.

before Used in the restore command.

bootstrap Used in the restore command.

catalog Allowed in the use command to specify the catalog name to be used.

catalogs Used in the show command. Takes no arguments.

client — fd

clients Used in the show, list, and llist commands. Takes no arguments.

counters Used in the show command. Takes no arguments.

current Used in the restore command. Takes no argument.

days Used to define the number of days the ”list nextvol” command should consider when looking for jobs
to be run. The days keyword can also be used on the ”status dir” command so that it will display jobs
scheduled for the number of days you want.

devices Used in the show command. Takes no arguments.

dir — director

1.4. ALPHABETIC LIST OF CONSOLE KEYWORDS 3

directors Used in the show command. Takes no arguments.

directory Used in the restore command. Its argument specifies the directory to be restored.

enabled This keyword can appear on the update volume as well as the update slots commands, and
can allows one of the following arguments: yes, true, no, false, archived, 0, 1, 2. Where 0 corresponds
to no or false, 1 corresponds to yes or true, and 2 corresponds to archived. Archived volumes will not
be used, nor will the Media record in the catalog be pruned. Volumes that are not enabled, will not
be used for backup or restore.

done Used in the restore command. Takes no argument.

file Used in the restore command.

files Used in the list and llist commands. Takes no arguments.

fileset

filesets Used in the show command. Takes no arguments.

help Used in the show command. Takes no arguments.

jobs Used in the show, list and llist commands. Takes no arguments.

jobmedia Used in the list and llist commands. Takes no arguments.

jobtotals Used in the list and llist commands. Takes no arguments.

jobid The JobId is the numeric jobid that is printed in the Job Report output. It is the index of the
database record for the given job. While it is unique for all the existing Job records in the catalog
database, the same JobId can be reused once a Job is removed from the catalog. Probably you will
refer specific Jobs that ran using their numeric JobId.

job — jobname The Job or Jobname keyword refers to the name you specified in the Job resource, and
hence it refers to any number of Jobs that ran. It is typically useful if you want to list all jobs of a
particular name.

level

listing Permitted on the estimate command. Takes no argument.

limit

messages Used in the show command. Takes no arguments.

media Used in the list and llist commands. Takes no arguments.

nextvol — nextvolume Used in the list and llist commands. Takes no arguments.

on Takes no keyword.

off Takes no keyword.

pool

pools Used in the show, list, and llist commands. Takes no arguments.

select Used in the restore command. Takes no argument.

limit Used in the setbandwidth command. Takes integer in KB/s unit.

storages Used in the show command. Takes no arguments.

schedules Used in the show command. Takes no arguments.

sd — store — storage

ujobid The ujobid is a unique job identification that is printed in the Job Report output. At the current
time, it consists of the Job name (from the Name directive for the job) appended with the date and
time the job was run. This keyword is useful if you want to completely identify the Job instance run.

4 CHAPTER 1. BACULA CONSOLE

volume

volumes Used in the list and llist commands. Takes no arguments.

where Used in the restore command.

yes Used in the restore command. Takes no argument.

1.5 Alphabetic List of Console Commands

The following commands are currently implemented:

add [pool=<pool-name> storage=<storage> jobid=<JobId>] This command is used to add Vol-
umes to an existing Pool. That is, it creates the Volume name in the catalog and inserts into the Pool
in the catalog, but does not attempt to access the physical Volume. Once added, Bacula expects that
Volume to exist and to be labeled. This command is not normally used since Bacula will automatically
do the equivalent when Volumes are labeled. However, there may be times when you have removed a
Volume from the catalog and want to later add it back.

Normally, the label command is used rather than this command because the label command labels
the physical media (tape, disk, DVD, ...) and does the equivalent of the add command. The add
command affects only the Catalog and not the physical media (data on Volumes). The physical media
must exist and be labeled before use (usually with the label command). This command can, however,
be useful if you wish to add a number of Volumes to the Pool that will be physically labeled at a
later time. It can also be useful if you are importing a tape from another site. Please see the label
command below for the list of legal characters in a Volume name.

autodisplay on/off This command accepts on or off as an argument, and turns auto-display of messages
on or off respectively. The default for the console program is off, which means that you will be notified
when there are console messages pending, but they will not automatically be displayed.

When autodisplay is turned off, you must explicitly retrieve the messages with the messages command.
When autodisplay is turned on, the messages will be displayed on the console as they are received.

automount on/off This command accepts on or off as the argument, and turns auto-mounting of the
Volume after a label command on or off respectively. The default is on. If automount is turned off,
you must explicitly mount tape Volumes after a label command to use it.

cancel [jobid=<number> job=<job-name> ujobid=<unique-jobid>] This command is used to
cancel a job and accepts jobid=nnn or job=xxx as an argument where nnn is replaced by the
JobId and xxx is replaced by the job name. If you do not specify a keyword, the Console program will
prompt you with the names of all the active jobs allowing you to choose one.

Once a Job is marked to be canceled, it may take a bit of time (generally within a minute but up to
two hours) before the Job actually terminates, depending on what operations it is doing. Don’t be
surprised that you receive a Job not found message. That just means that one of the three daemons
had already canceled the job. Messages numbered in the 1000’s are from the Director, 2000’s are from
the File daemon and 3000’s from the Storage daemon.

create [pool=<pool-name>] This command is not normally used as the Pool records are automatically
created by the Director when it starts based on what it finds in the conf file. If needed, this command
can be to create a Pool record in the database using the Pool resource record defined in the Director’s
configuration file. So in a sense, this command simply transfers the information from the Pool resource
in the configuration file into the Catalog. Normally this command is done automatically for you when
the Director starts providing the Pool is referenced within a Job resource. If you use this command on
an existing Pool, it will automatically update the Catalog to have the same information as the Pool
resource. After creating a Pool, you will most likely use the label command to label one or more
volumes and add their names to the Media database.

When starting a Job, if Bacula determines that there is no Pool record in the database, but there is a
Pool resource of the appropriate name, it will create it for you. If you want the Pool record to appear
in the database immediately, simply use this command to force it to be created.

1.5. ALPHABETIC LIST OF CONSOLE COMMANDS 5

delete [volume=<vol-name> pool=<pool-name> job jobid=<id>] The delete command is used to
delete a Volume, Pool or Job record from the Catalog as well as all associated catalog Volume records
that were created. This command operates only on the Catalog database and has no effect on the
actual data written to a Volume. This command can be dangerous and we strongly recommend that
you do not use it unless you know what you are doing.

If the keyword Volume appears on the command line, the named Volume will be deleted from the
catalog, if the keyword Pool appears on the command line, a Pool will be deleted, and if the keyword
Job appears on the command line, a Job and all its associated records (File and JobMedia) will be
deleted from the catalog. The full form of this command is:

delete pool=<pool-name>

or

delete volume=<volume-name> pool=<pool-name> or

delete JobId=<job-id> JobId=<job-id2> ... or

delete Job JobId=n,m,o-r,t ...

The first form deletes a Pool record from the catalog database. The second form deletes a Volume
record from the specified pool in the catalog database. The third form deletes the specified Job record
from the catalog database. The last form deletes JobId records for JobIds n, m, o, p, q, r, and t.
Where each one of the n,m,... is, of course, a number. That is a ”delete jobid” accepts lists and ranges
of jobids.

disable job<job-name> This command permits you to disable a Job for automatic scheduling. The job
may have been previously enabled with the Job resource Enabled directive or using the console enable
command. The next time the Director is restarted, the Enable/Disable state will be set to the value
in the Job resource (default enabled) as defined in the bacula-dir.conf file.

enable job<job-name> This command permits you to enable a Job for automatic scheduling. The job
may have been previously disabled with the Job resource Enabled directive or using the console
disable command. The next time the Director is restarted, the Enable/Disable state will be set to
the value in the Job resource (default enabled) as defined in the bacula-dir.conf file.

estimate Using this command, you can get an idea how many files will be backed up, or if you are unsure
about your Include statements in your FileSet, you can test them without doing an actual backup. The
default is to assume a Full backup. However, you can override this by specifying a level=Incremental
or level=Differential on the command line. A Job name must be specified or you will be prompted
for one, and optionally a Client and FileSet may be specified on the command line. It then contacts
the client which computes the number of files and bytes that would be backed up. Please note that
this is an estimate calculated from the number of blocks in the file rather than by reading the actual
bytes. As such, the estimated backup size will generally be larger than an actual backup.

The estimate command can use the accurate code to detect changes and give a better estimation.
You can set the accurate behavior on command line using accurate=yes/no or use the Job setting as
default value.

Optionally you may specify the keyword listing in which case, all the files to be backed up will be
listed. Note, it could take quite some time to display them if the backup is large. The full form is:

estimate job=<job-name> listing client=<client-name> accurate=<yes/no>

fileset=<fileset-name> level=<level-name>

Specification of the job is sufficient, but you can also override the client, fileset, accurate and/or level
by specifying them on the estimate command line.

As an example, you might do:

@output /tmp/listing

estimate job=NightlySave listing level=Incremental

@output

6 CHAPTER 1. BACULA CONSOLE

which will do a full listing of all files to be backed up for the Job NightlySave during an Incremental
save and put it in the file /tmp/listing. Note, the byte estimate provided by this command is based
on the file size contained in the directory item. This can give wildly incorrect estimates of the actual
storage used if there are sparse files on your systems. Sparse files are often found on 64 bit systems for
certain system files. The size that is returned is the size Bacula will backup if the sparse option is not
specified in the FileSet. There is currently no way to get an estimate of the real file size that would be
found should the sparse option be enabled.

exit This command terminates the console program.

gui Invoke the non-interactive gui mode.

gui [on|off]

help This command displays the list of commands available.

label This command is used to label physical volumes. The full form of this command is:

label storage=<storage-name> volume=<volume-name>

slot=<slot>

If you leave out any part, you will be prompted for it. The media type is automatically taken from the
Storage resource definition that you supply. Once the necessary information is obtained, the Console
program contacts the specified Storage daemon and requests that the Volume be labeled. If the Volume
labeling is successful, the Console program will create a Volume record in the appropriate Pool.

The Volume name is restricted to letters, numbers, and the special characters hyphen (-), underscore
(), colon (:), and period (.). All other characters including a space are invalid. This restriction is to
ensure good readability of Volume names to reduce operator errors.

Please note, when labeling a blank tape, Bacula will get read I/O error when it attempts to ensure
that the tape is not already labeled. If you wish to avoid getting these messages, please write an EOF
mark on your tape before attempting to label it:

mt rewind

mt weof

The label command can fail for a number of reasons:

1. The Volume name you specify is already in the Volume database.

2. The Storage daemon has a tape or other Volume already mounted on the device, in which case
you must unmount the device, insert a blank tape, then do the label command.

3. The Volume in the device is already a Bacula labeled Volume. (Bacula will never relabel a Bacula
labeled Volume unless it is recycled and you use the relabel command).

4. There is no Volume in the drive.

There are two ways to relabel a volume that already has a Bacula label. The brute force method is to
write an end of file mark on the tape using the system mt program, something like the following:

mt -f /dev/st0 rewind

mt -f /dev/st0 weof

For a disk volume, you would manually delete the Volume.

Then you use the label command to add a new label. However, this could leave traces of the old
volume in the catalog.

The preferable method to relabel a Volume is to first purge the volume, either automatically, or
explicitly with the purge command, then use the relabel command described below.

If your autochanger has barcode labels, you can label all the Volumes in your autochanger one after
another by using the label barcodes command. For each tape in the changer containing a barcode,
Bacula will mount the tape and then label it with the same name as the barcode. An appropriate
Media record will also be created in the catalog. Any barcode that begins with the same characters
as specified on the ”CleaningPrefix=xxx” directive in the Director’s Pool resource, will be treated as a
cleaning tape, and will not be labeled. However, an entry for the cleaning tape will be created in the
catalog. For example with:

1.5. ALPHABETIC LIST OF CONSOLE COMMANDS 7

Pool {

Name ...

Cleaning Prefix = "CLN"

}

Any slot containing a barcode of CLNxxxx will be treated as a cleaning tape and will not be mounted.
Note, the full form of the command is:

label storage=xxx pool=yyy slots=1-5,10 barcodes

list The list command lists the requested contents of the Catalog. The various fields of each record are
listed on a single line. The various forms of the list command are:

list jobs

list jobid=<id> (list jobid id)

list ujobid=<unique job name> (list job with unique name)

list job=<job-name> (list all jobs with "job-name")

list jobname=<job-name> (same as above)

In the above, you can add "limit=nn" to limit the output to

nn jobs.

list joblog jobid=<id> (list job output if recorded in the catalog)

list jobmedia

list jobmedia jobid=<id>

list jobmedia job=<job-name>

list files jobid=<id>

list files job=<job-name>

list pools

list clients

list jobtotals

list volumes

list volumes jobid=<id>

list volumes pool=<pool-name>

list volumes job=<job-name>

list volume=<volume-name>

list nextvolume job=<job-name>

list nextvol job=<job-name>

list nextvol job=<job-name> days=nnn

What most of the above commands do should be more or less obvious. In general if you do not specify
all the command line arguments, the command will prompt you for what is needed.

The list nextvol command will print the Volume name to be used by the specified job. You should be
aware that exactly what Volume will be used depends on a lot of factors including the time and what
a prior job will do. It may fill a tape that is not full when you issue this command. As a consequence,
this command will give you a good estimate of what Volume will be used but not a definitive answer.
In addition, this command may have certain side effect because it runs through the same algorithm
as a job, which means it may automatically purge or recycle a Volume. By default, the job specified
must run within the next two days or no volume will be found. You can, however, use the days=nnn

8 CHAPTER 1. BACULA CONSOLE

specification to specify up to 50 days. For example, if on Friday, you want to see what Volume will be
needed on Monday, for job MyJob, you would use list nextvol job=MyJob days=3.

If you wish to add specialized commands that list the contents of the catalog, you can do so by adding
them to the query.sql file. However, this takes some knowledge of programming SQL. Please see the
query command below for additional information. See below for listing the full contents of a catalog
record with the llist command.

As an example, the command list pools might produce the following output:

+------+---------+---------+---------+----------+-------------+

| PoId | Name | NumVols | MaxVols | PoolType | LabelFormat |

+------+---------+---------+---------+----------+-------------+

| 1 | Default | 0 | 0 | Backup | * |

| 2 | Recycle | 0 | 8 | Backup | File |

+------+---------+---------+---------+----------+-------------+

As mentioned above, the list command lists what is in the database. Some things are put into the
database immediately when Bacula starts up, but in general, most things are put in only when they
are first used, which is the case for a Client as with Job records, etc.

Bacula should create a client record in the database the first time you run a job for that client. Doing
a status will not cause a database record to be created. The client database record will be created
whether or not the job fails, but it must at least start. When the Client is actually contacted, additional
info from the client will be added to the client record (a ”uname -a” output).

If you want to see what Client resources you have available in your conf file, you use the Console
command show clients.

llist The llist or ”long list” command takes all the same arguments that the list command described above
does. The difference is that the llist command list the full contents of each database record selected.
It does so by listing the various fields of the record vertically, with one field per line. It is possible to
produce a very large number of output lines with this command.

If instead of the list pools as in the example above, you enter llist pools you might get the following
output:

PoolId: 1

Name: Default

NumVols: 0

MaxVols: 0

UseOnce: 0

UseCatalog: 1

AcceptAnyVolume: 1

VolRetention: 1,296,000

VolUseDuration: 86,400

MaxVolJobs: 0

MaxVolBytes: 0

AutoPrune: 0

Recycle: 1

PoolType: Backup

LabelFormat: *

PoolId: 2

Name: Recycle

NumVols: 0

MaxVols: 8

UseOnce: 0

UseCatalog: 1

AcceptAnyVolume: 1

VolRetention: 3,600

VolUseDuration: 3,600

MaxVolJobs: 1

MaxVolBytes: 0

AutoPrune: 0

Recycle: 1

PoolType: Backup

LabelFormat: File

messages This command causes any pending console messages to be immediately displayed.

1.5. ALPHABETIC LIST OF CONSOLE COMMANDS 9

memory Print current memory usage.

mount The mount command is used to get Bacula to read a volume on a physical device. It is a way to
tell Bacula that you have mounted a tape and that Bacula should examine the tape. This command
is normally used only after there was no Volume in a drive and Bacula requests you to mount a new
Volume or when you have specifically unmounted a Volume with the unmount console command,
which causes Bacula to close the drive. If you have an autoloader, the mount command will not cause
Bacula to operate the autoloader unless you specify a slot and possibly a drive. The various forms of
the mount command are:

mount storage=<storage-name> [slot=<num>] [drive=<num>]

mount [jobid=<id> — job=<job-name>]

If you have specified Automatic Mount = yes in the Storage daemon’s Device resource, under most
circumstances, Bacula will automatically access the Volume unless you have explicitly unmounted it
in the Console program.

prune The Prune command allows you to safely remove expired database records from Jobs, Volumes and
Statistics. This command works only on the Catalog database and does not affect data written to
Volumes. In all cases, the Prune command applies a retention period to the specified records. You can
Prune expired File entries from Job records; you can Prune expired Job records from the database,
and you can Prune both expired Job and File records from specified Volumes.

prune files—jobs—volume—stats client=<client-name> volume=<volume-name>

For a Volume to be pruned, the VolStatus must be Full, Used, or Append, otherwise the pruning will
not take place.

purge The Purge command will delete associated Catalog database records from Jobs and Volumes without
considering the retention period. Purge works only on the Catalog database and does not affect data
written to Volumes. This command can be dangerous because you can delete catalog records associated
with current backups of files, and we recommend that you do not use it unless you know what you are
doing. The permitted forms of purge are:

purge files jobid=<jobid>—job=<job-name>—client=<client-name>

purge jobs client=<client-name> (of all jobs)

purge volume—volume=<vol-name> (of all jobs)

For the purge command to work on Volume Catalog database records the VolStatus must be Append,
Full, Used, or Error.

The actual data written to the Volume will be unaffected by this command unless you are using the
ActionOnPurge=Truncate option on those Media.

To ask Bacula to truncate your Purged volumes, you need to use the following command in interactive
mode or in a RunScript:

*purge volume action=truncate storage=File allpools

or by default, action=all

*purge volume action storage=File pool=Default

This is possible to specify the volume name, the media type, the pool, the storage, etc. . . (see help

purge) Be sure that your storage device is idle when you decide to run this command.

python The python command takes a single argument restart:

python restart

This causes the Python interpreter in the Director to be reinitialized. This can be helpful for testing
because once the Director starts and the Python interpreter is initialized, there is no other way to make
it accept any changes to the startup script DirStartUp.py. For more details on Python scripting,
please see the Python Scripting chapter (chapter 1 on page 1) of the Bacula Community Misc
Manual.

query This command reads a predefined SQL query from the query file (the name and location of the
query file is defined with the QueryFile resource record in the Director’s configuration file). You are
prompted to select a query from the file, and possibly enter one or more parameters, then the command
is submitted to the Catalog database SQL engine.

The following queries are currently available (version 2.2.7):

10 CHAPTER 1. BACULA CONSOLE

Available queries:

1: List up to 20 places where a File is saved regardless of the directory

2: List where the most recent copies of a file are saved

3: List last 20 Full Backups for a Client

4: List all backups for a Client after a specified time

5: List all backups for a Client

6: List Volume Attributes for a selected Volume

7: List Volumes used by selected JobId

8: List Volumes to Restore All Files

9: List Pool Attributes for a selected Pool

10: List total files/bytes by Job

11: List total files/bytes by Volume

12: List Files for a selected JobId

13: List Jobs stored on a selected MediaId

14: List Jobs stored for a given Volume name

15: List Volumes Bacula thinks are in changer

16: List Volumes likely to need replacement from age or errors

Choose a query (1-16):

quit This command terminates the console program. The console program sends the quit request to the
Director and waits for acknowledgment. If the Director is busy doing a previous command for you that
has not terminated, it may take some time. You may quit immediately by issuing the .quit command
(i.e. quit preceded by a period).

relabel This command is used to label physical volumes. The full form of this command is:

relabel storage=<storage-name> oldvolume=<old-volume-name> volume=<newvolume-name>

If you leave out any part, you will be prompted for it. In order for the Volume (old-volume-name) to
be relabeled, it must be in the catalog, and the volume status must be marked Purged or Recycle.
This happens automatically as a result of applying retention periods, or you may explicitly purge the
volume using the purge command.

Once the volume is physically relabeled, the old data previously written on the Volume is lost and
cannot be recovered.

release This command is used to cause the Storage daemon to rewind (release) the current tape in the
drive, and to re-read the Volume label the next time the tape is used.

release storage=<storage-name>

After a release command, the device is still kept open by Bacula (unless Always Open is set to No in
the Storage Daemon’s configuration) so it cannot be used by another program. However, with some
tape drives, the operator can remove the current tape and to insert a different one, and when the next
Job starts, Bacula will know to re-read the tape label to find out what tape is mounted. If you want
to be able to use the drive with another program (e.g. mt), you must use the unmount command to
cause Bacula to completely release (close) the device.

reload The reload command causes the Director to re-read its configuration file and apply the new values.
The new values will take effect immediately for all new jobs. However, if you change schedules, be
aware that the scheduler pre-schedules jobs up to two hours in advance, so any changes that are to
take place during the next two hours may be delayed. Jobs that have already been scheduled to run
(i.e. surpassed their requested start time) will continue with the old values. New jobs will use the new
values. Each time you issue a reload command while jobs are running, the old config values will kept
until all jobs that were running before issuing the reload terminate, at which time the old config values
will be released from memory. As a default a maximum number of 32 reload requests that can be
made, which is generally sufficient. In the case that you make a very large number of reload requests,
you may use the Maximum Reload Requests directive in the Director resource of bacula-dir.conf
to set a larger maximum to that value you wish.

restore The restore command allows you to select one or more Jobs (JobIds) to be restored using various
methods. Once the JobIds are selected, the File records for those Jobs are placed in an internal Bacula
directory tree, and the restore enters a file selection mode that allows you to interactively walk up
and down the file tree selecting individual files to be restored. This mode is somewhat similar to the
standard Unix restore program’s interactive file selection mode.

restore storage=<storage-name> client=<backup-client-name> where=<path> pool=<pool-name>
fileset=<fileset-name> restoreclient=<restore-client-name> restorejob=<job-name> select current all
done

1.5. ALPHABETIC LIST OF CONSOLE COMMANDS 11

Where current, if specified, tells the restore command to automatically select a restore to the most
current backup. If not specified, you will be prompted. The all specification tells the restore command
to restore all files. If it is not specified, you will be prompted for the files to restore. For details of the
restore command, please see the Restore chapter (chapter 24 on page 247) of the Bacula Community
Main Manual.

The client keyword initially specifies the client from which the backup was made and the client to
which the restore will be make. However, if the restoreclient keyword is specified, then the restore is
written to that client.

The restore job rarely needs to be specified, as bacula installations commonly only have a single restore
job configured. However, for certain cases, such as a varying list of RunScript specifications, multiple
restore jobs may be configured. The restorejob argument allows the selection of one of these jobs.

run This command allows you to schedule jobs to be run immediately. The full form of the command is:

run job=<job-name> client=<client-name> fileset=<FileSet-name> level=<level-keyword>
storage=<storage-name> where=<directory-prefix> when=<universal-time-specification> spool-
data=yes—no yes

Any information that is needed but not specified will be listed for selection, and before starting the
job, you will be prompted to accept, reject, or modify the parameters of the job to be run, unless you
have specified yes, in which case the job will be immediately sent to the scheduler.

On my system, when I enter a run command, I get the following prompt:

A job name must be specified.

The defined Job resources are:

1: Matou

2: Polymatou

3: Rufus

4: Minimatou

5: Minou

6: PmatouVerify

7: MatouVerify

8: RufusVerify

9: Watchdog

Select Job resource (1-9):

If I then select number 5, I am prompted with:

Run Backup job

JobName: Minou

FileSet: Minou Full Set

Level: Incremental

Client: Minou

Storage: DLTDrive

Pool: Default

When: 2003-04-23 17:08:18

OK to run? (yes/mod/no):

If I now enter yes, the Job will be run. If I enter mod, I will be presented with the following prompt.

Parameters to modify:

1: Level

2: Storage

3: Job

4: FileSet

5: Client

6: When

7: Pool

Select parameter to modify (1-7):

If you wish to start a job at a later time, you can do so by setting the When time. Use the mod option
and select When (no. 6). Then enter the desired start time in YYYY-MM-DD HH:MM:SS format.

The spooldata argument of the run command cannot be modified through the menu and is only
accessible by setting its value on the intial command line. If no spooldata flag is set, the job, storage
or schedule flag is used.

12 CHAPTER 1. BACULA CONSOLE

setbandwidth This command is used to limit the bandwidth of a running job or a client.

setbandwidth limit=¡nb¿ [jobid=¡id¿ — client=¡cli¿]

setdebug This command is used to set the debug level in each daemon. The form of this command is:

setdebug level=nn [trace=0/1 client=<client-name> — dir — director — storage=<storage-name>
— all]

If trace=1 is set, then tracing will be enabled, and the daemon will be placed in trace mode, which
means that all debug output as set by the debug level will be directed to the file bacula.trace in
the current directory of the daemon. Normally, tracing is needed only for Win32 clients where the
debug output cannot be written to a terminal or redirected to a file. When tracing, each debug output
message is appended to the trace file. You must explicitly delete the file when you are done.

setip Sets new client address – if authorized.

A console is authorized to use the SetIP command only if it has a Console resource definition in both
the Director and the Console. In addition, if the console name, provided on the Name = directive,
must be the same as a Client name, the user of that console is permitted to use the SetIP command
to change the Address directive in the Director’s client resource to the IP address of the Console. This
permits portables or other machines using DHCP (non-fixed IP addresses) to ”notify” the Director of
their current IP address.

show The show command will list the Director’s resource records as defined in the Director’s configuration
file (normally bacula-dir.conf). This command is used mainly for debugging purposes by developers.
The following keywords are accepted on the show command line: catalogs, clients, counters, devices, di-
rectors, filesets, jobs, messages, pools, schedules, storages, all, help. Please don’t confuse this command
with the list, which displays the contents of the catalog.

sqlquery The sqlquery command puts the Console program into SQL query mode where each line you
enter is concatenated to the previous line until a semicolon (;) is seen. The semicolon terminates the
command, which is then passed directly to the SQL database engine. When the output from the SQL
engine is displayed, the formation of a new SQL command begins. To terminate SQL query mode and
return to the Console command prompt, you enter a period (.) in column 1.

Using this command, you can query the SQL catalog database directly. Note you should really know
what you are doing otherwise you could damage the catalog database. See the query command below
for simpler and safer way of entering SQL queries.

Depending on what database engine you are using (MySQL, PostgreSQL or SQLite), you will have
somewhat different SQL commands available. For more detailed information, please refer to the
MySQL, PostgreSQL or SQLite documentation.

status This command will display the status of all components. For the director, it will display the next
jobs that are scheduled during the next 24 hours as well as the status of currently running jobs. For
the Storage Daemon, you will have drive status or autochanger content. The File Daemon will give you
information about current jobs like average speed or file accounting. The full form of this command is:

status [all — dir=<dir-name> — director [days=nnn] — client=<client-name> — [slots]
storage=<storage-name>]

If you do a status dir, the console will list any currently running jobs, a summary of all jobs scheduled
to be run in the next 24 hours, and a listing of the last ten terminated jobs with their statuses. The
scheduled jobs summary will include the Volume name to be used. You should be aware of two things:
1. to obtain the volume name, the code goes through the same code that will be used when the job
runs, but it does not do pruning nor recycling of Volumes; 2. The Volume listed is at best a guess.
The Volume actually used may be different because of the time difference (more durations may expire
when the job runs) and another job could completely fill the Volume requiring a new one.

In the Running Jobs listing, you may find the following types of information:

2507 Catalog MatouVerify.2004-03-13_05.05.02 is waiting execution

5349 Full CatalogBackup.2004-03-13_01.10.00 is waiting for higher

priority jobs to finish

5348 Differe Minou.2004-03-13_01.05.09 is waiting on max Storage jobs

5343 Full Rufus.2004-03-13_01.05.04 is running

1.5. ALPHABETIC LIST OF CONSOLE COMMANDS 13

Looking at the above listing from bottom to top, obviously JobId 5343 (Rufus) is running. JobId 5348
(Minou) is waiting for JobId 5343 to finish because it is using the Storage resource, hence the ”waiting
on max Storage jobs”. JobId 5349 has a lower priority than all the other jobs so it is waiting for higher
priority jobs to finish, and finally, JobId 2507 (MatouVerify) is waiting because only one job can run
at a time, hence it is simply ”waiting execution”

If you do a status dir, it will by default list the first occurrence of all jobs that are scheduled today
and tomorrow. If you wish to see the jobs that are scheduled in the next three days (e.g. on Friday
you want to see the first occurrence of what tapes are scheduled to be used on Friday, the weekend,
and Monday), you can add the days=3 option. Note, a days=0 shows the first occurrence of jobs
scheduled today only. If you have multiple run statements, the first occurrence of each run statement
for the job will be displayed for the period specified.

If your job seems to be blocked, you can get a general idea of the problem by doing a status dir, but you
can most often get a much more specific indication of the problem by doing a status storage=xxx.
For example, on an idle test system, when we do status storage=File, we get:

status storage=File

Connecting to Storage daemon File at 192.168.68.112:8103

rufus-sd Version: 1.39.6 (24 March 2006) i686-pc-linux-gnu redhat (Stentz)

Daemon started 26-Mar-06 11:06, 0 Jobs run since started.

Running Jobs:

No Jobs running.

====

Jobs waiting to reserve a drive:

====

Terminated Jobs:

JobId Level Files Bytes Status Finished Name

==

59 Full 234 4,417,599 OK 15-Jan-06 11:54 kernsave

====

Device status:

Autochanger "DDS-4-changer" with devices:

"DDS-4" (/dev/nst0)

Device "DDS-4" (/dev/nst0) is mounted with Volume="TestVolume002"

Pool="*unknown*"

Slot 2 is loaded in drive 0.

Total Bytes Read=0 Blocks Read=0 Bytes/block=0

Positioned at File=0 Block=0

Device "DVD-Writer" (/dev/hdc) is not open.

Device "File" (/tmp) is not open.

====

In Use Volume status:

====

Now, what this tells us is that no jobs are running and that none of the devices are in use. Now, if we
unmount the autochanger, which will not be used in this example, and then start a Job that uses the
File device, the job will block. When we re-issue the status storage command, we get for the Device
status:

status storage=File

...

Device status:

Autochanger "DDS-4-changer" with devices:

"DDS-4" (/dev/nst0)

Device "DDS-4" (/dev/nst0) is not open.

Device is BLOCKED. User unmounted.

Drive 0 is not loaded.

Device "DVD-Writer" (/dev/hdc) is not open.

Device "File" (/tmp) is not open.

Device is BLOCKED waiting for media.

====

...

14 CHAPTER 1. BACULA CONSOLE

Now, here it should be clear that if a job were running that wanted to use the Autochanger (with two
devices), it would block because the user unmounted the device. The real problem for the Job I started
using the ”File” device is that the device is blocked waiting for media – that is Bacula needs you to
label a Volume.

If you enter status storage, Bacula will prompt you with a list of the storage resources. When you
select one, the Storage daemon will be requested to do a status. However, note that the Storage
daemon will do a status of all the devices it has, and not just of the one you requested. In the current
version of Bacula, when you enter the status storage command, it prompts you only with a subset
of all the storage resources that the Director considers to be in different Storage daemons. In other
words, it attempts to remove duplicate storage definitions. This can be a bit confusing at first, but
can vastly simplify the promt listing if you have defined a large number of storage resources.

If you prefer to see the full list of all storage resources, simply add the keyword select to the command
such as: status select storage and you will get a prompt that includes all storage resources even if
they reference the same storage daemon.

time Prints the current time.

trace Turn on/off trace to file.

umount For old-time Unix guys. See the unmount command for full details.

unmount This command causes the indicated Bacula Storage daemon to unmount the specified device.
The forms of the command are the same as the mount command:

unmount storage=<storage-name> [drive=<num>]

unmount [jobid=<id> | job=<job-name>]

Once you unmount a storage device, Bacula will no longer be able to use it until you issue a mount
command for that device. If Bacula needs to access that device, it will block and issue mount requests
periodically to the operator.

If the device you are unmounting is an autochanger, it will unload the drive you have specified on the
command line. If no drive is specified, it will assume drive 1.

update This command will update the catalog for either a specific Pool record, a Volume record, or the Slots
in an autochanger with barcode capability. In the case of updating a Pool record, the new information
will be automatically taken from the corresponding Director’s configuration resource record. It can be
used to increase the maximum number of volumes permitted or to set a maximum number of volumes.
The following main keywords may be specified:

media, volume, pool, slots, stats

In the case of updating a Volume, you will be prompted for which value you wish to change. The
following Volume parameters may be changed:

Volume Status

Volume Retention Period

Volume Use Duration

Maximum Volume Jobs

Maximum Volume Files

Maximum Volume Bytes

Recycle Flag

Recycle Pool

Slot

InChanger Flag

Pool

Volume Files

Volume from Pool

All Volumes from Pool

All Volumes from all Pools

For slots update slots, Bacula will obtain a list of slots and their barcodes from the Storage daemon,
and for each barcode found, it will automatically update the slot in the catalog Media record to
correspond to the new value. This is very useful if you have moved cassettes in the magazine, or if

1.6. SPECIAL DOT COMMANDS 15

you have removed the magazine and inserted a different one. As the slot of each Volume is updated,
the InChanger flag for that Volume will also be set, and any other Volumes in the Pool that were last
mounted on the same Storage device will have their InChanger flag turned off. This permits Bacula to
know what magazine (tape holder) is currently in the autochanger.

If you do not have barcodes, you can accomplish the same thing in version 1.33 and later by using the
update slots scan command. The scan keyword tells Bacula to physically mount each tape and to
read its VolumeName.

For Pool update pool, Bacula will move the Volume record from its existing pool to the pool specified.

For Volume from Pool, All Volumes from Pool and All Volumes from all Pools, the follow-
ing values are updated from the Pool record: Recycle, RecyclePool, VolRetention, VolUseDuration,
MaxVolJobs, MaxVolFiles, and MaxVolBytes. (RecyclePool feature is available with bacula 2.1.4 or
higher.)

The full form of the update command with all command line arguments is:

update volume=xxx pool=yyy slots volstatus=xxx VolRetention=ddd

VolUse=ddd MaxVolJobs=nnn MaxVolBytes=nnn Recycle=yes|no

slot=nnn enabled=n recyclepool=zzz

use This command allows you to specify which Catalog database to use. Normally, you will be using only
one database so this will be done automatically. In the case that you are using more than one database,
you can use this command to switch from one to another.

use [catalog=name-of-catalog]

var This command takes a string or quoted string and does variable expansion on it the same way variable
expansion is done on the LabelFormat string. Thus, for the most part, you can test your LabelFormat
strings. The difference between the var command and the actual LabelFormat process is that during
the var command, no job is running so ”dummy” values are used in place of Job specific variables.
Generally, however, you will get a good idea of what is going to happen in the real case.

version The command prints the Director’s version.

wait The wait command causes the Director to pause until there are no jobs running. This command is
useful in a batch situation such as regression testing where you wish to start a job and wait until that
job completes before continuing. This command now has the following options:

wait [jobid=nn] [jobuid=unique id] [job=job name]

If specified with a specific JobId, ... the wait command will wait for that particular job to terminate
before continuing.

1.6 Special dot Commands

There is a list of commands that are prefixed with a period (.). These commands are intended to be used
either by batch programs or graphical user interface front-ends. They are not normally used by interactive
users. Once GUI development begins, this list will be considerably expanded. The following is the list of
dot commands:

.backups job=xxx list backups for specified job

.clients list all client names

.defaults client=xxx fileset=yyy list defaults for specified client

.die cause the Director to segment fault (for debugging)

.dir when in tree mode prints the equivalent to the dir command,

but with fields separated by commas rather than spaces.

.exit quit

.filesets list all fileset names

.help help command output

.jobs list all job names

.levels list all levels

.messages get quick messages

.msgs return any queued messages

.pools list all pool names

.quit quit

.status get status output

.storage return storage resource names

.types list job types

16 CHAPTER 1. BACULA CONSOLE

1.7 Special At (@) Commands

Normally, all commands entered to the Console program are immediately forwarded to the Director, which
may be on another machine, to be executed. However, there is a small list of at commands, all beginning
with an at character (@), that will not be sent to the Director, but rather interpreted by the Console program
directly. Note, these commands are implemented only in the tty console program and not in the Bat Console.
These commands are:

@input <filename> Read and execute the commands contained in the file specified.

@output <filename> w/a Send all following output to the filename specified either overwriting the file
(w) or appending to the file (a). To redirect the output to the terminal, simply enter @output without
a filename specification. WARNING: be careful not to overwrite a valid file. A typical example during
a regression test might be:

@output /dev/null

commands ...

@output

@tee <filename> w/a Send all subsequent output to both the specified file and the terminal. It is turned
off by specifying @tee or @output without a filename.

@sleep <seconds> Sleep the specified number of seconds.

@time Print the current time and date.

@version Print the console’s version.

@quit quit

@exit quit

@# anything Comment

@help Get the list of every special @ commands.

@separator <char> When using bconsole with readline, you can set the command separator to one of
those characters to write commands who require multiple input on one line, or to put multiple com-
mands on a single line.

!$%&’()*+,-/:;<>?[]^‘{|}~

Note, if you use a semicolon (;) as a separator character, which is common, you will not be able to use
the sql command, which requires each command to be terminated by a semicolon.

1.8 Running the Console from a Shell Script

You can automate many Console tasks by running the console program from a shell script. For example, if
you have created a file containing the following commands:

./bconsole -c ./bconsole.conf <<END_OF_DATA

unmount storage=DDS-4

quit

END_OF_DATA

when that file is executed, it will unmount the current DDS-4 storage device. You might want to run this
command during a Job by using the RunBeforeJob or RunAfterJob records.
It is also possible to run the Console program from file input where the file contains the commands as follows:

./bconsole -c ./bconsole.conf <filename

where the file named filename contains any set of console commands.
As a real example, the following script is part of the Bacula regression tests. It labels a volume (a disk
volume), runs a backup, then does a restore of the files saved.

1.9. ADDING VOLUMES TO A POOL 17

bin/bconsole -c bin/bconsole.conf <<END_OF_DATA

@output /dev/null

messages

@output /tmp/log1.out

label volume=TestVolume001

run job=Client1 yes

wait

messages

@#

@# now do a restore

@#

@output /tmp/log2.out

restore current all

yes

wait

messages

@output

quit

END_OF_DATA

The output from the backup is directed to /tmp/log1.out and the output from the restore is directed to
/tmp/log2.out. To ensure that the backup and restore ran correctly, the output files are checked with:

grep "^ *Termination: *Backup OK" /tmp/log1.out

backupstat=$?

grep "^ *Termination: *Restore OK" /tmp/log2.out

restorestat=$?

1.9 Adding Volumes to a Pool

If you have used the label command to label a Volume, it will be automatically added to the Pool, and you
will not need to add any media to the pool.
Alternatively, you may choose to add a number of Volumes to the pool without labeling them. At a later
time when the Volume is requested by Bacula you will need to label it.
Before adding a volume, you must know the following information:

1. The name of the Pool (normally ”Default”)

2. The Media Type as specified in the Storage Resource in the Director’s configuration file (e.g.
”DLT8000”)

3. The number and names of the Volumes you wish to create.

For example, to add media to a Pool, you would issue the following commands to the console program:

*add

Enter name of Pool to add Volumes to: Default

Enter the Media Type: DLT8000

Enter number of Media volumes to create. Max=1000: 10

Enter base volume name: Save

Enter the starting number: 1

10 Volumes created in pool Default

*

To see what you have added, enter:

*list media pool=Default

+-------+----------+---------+---------+-------+------------------+

| MedId | VolumeNa | MediaTyp| VolStat | Bytes | LastWritten |

+-------+----------+---------+---------+-------+------------------+

| 11 | Save0001 | DLT8000 | Append | 0 | 0000-00-00 00:00 |

| 12 | Save0002 | DLT8000 | Append | 0 | 0000-00-00 00:00 |

| 13 | Save0003 | DLT8000 | Append | 0 | 0000-00-00 00:00 |

| 14 | Save0004 | DLT8000 | Append | 0 | 0000-00-00 00:00 |

| 15 | Save0005 | DLT8000 | Append | 0 | 0000-00-00 00:00 |

| 16 | Save0006 | DLT8000 | Append | 0 | 0000-00-00 00:00 |

| 17 | Save0007 | DLT8000 | Append | 0 | 0000-00-00 00:00 |

| 18 | Save0008 | DLT8000 | Append | 0 | 0000-00-00 00:00 |

| 19 | Save0009 | DLT8000 | Append | 0 | 0000-00-00 00:00 |

| 20 | Save0010 | DLT8000 | Append | 0 | 0000-00-00 00:00 |

+-------+----------+---------+---------+-------+------------------+

*

18 CHAPTER 1. BACULA CONSOLE

Notice that the console program automatically appended a number to the base Volume name that you specify
(Save in this case). If you don’t want it to append a number, you can simply answer 0 (zero) to the question
”Enter number of Media volumes to create. Max=1000:”, and in this case, it will create a single Volume
with the exact name you specify.

Chapter 2

Baculum API and Web GUI Tools

This chapter presents the Bacula Web based interface that has been added to the Bacula project for version
7.0 and later.

2.1 Base Features

Baculum provides the following base features:

• Running Bacula jobs (backup, restore, verify...).

• Baculum API with OAuth2 authorization and HTTP Basic authentication.

• Baculum Web GUI - modern mobile-friendly web interface.

• Configuring Bacula on local and remote hosts.

• Monitoring Bacula service status.

• Bacula console available via a Web window.

• Multi-user interface.

• Support for customized and restricted consoles (Console ACL function).

• Volume management.

• User friendly graphs and metrics.

• Basic storage daemon operations (mount, umount, release, ...).

• Easy to use configuration and restore wizards.

• Multiple Director support.

• Live AJAX based statuses.

2.2 General Requirements

Environment for Baculum Web installation should have following components installed:

• A Web Server - with mod rewrite module loaded. Baculum Web has been tested with Apache and
Lighttpd web servers.

• PHP 5.3.4 or higher with following modules installed:

– cURL PHP module.

– MB String PHP module.

– JSON PHP module.

Environment for Baculum API installation should have following components installed:

19

20 CHAPTER 2. BACULUM API AND WEB GUI TOOLS

• A Web Server - with mod rewrite module loaded. Baculum has been tested with Apache and Lighttpd
web servers.

• PHP 5.3.4 or higher with following modules installed:

– PDO PHP support - depending on your catalog database: PDO PostgreSQL or PDO MySQL.
Note, in case using MySQL database there is required to use MySQL native driver. It is php-
mysqlnd for PHP, not php-mysql.

– BCMath PHP module.

– JSON PHP module.

• A working Bacula bconsole - configured Bacula text based console

• Direct access to the Bacula Catalog database (local or remote)

With installation from binary packages (deb, rpm) all requirements will be automatically installed as packages
dependencies.

2.3 Installation Baculum API from rpm binary packages

Note Before start using Baculum API and Baculum Web version 9.0.0 please backup your Bacula configu-
ration in safe place. It is specially important because on first save config action the Bacula configuration is
joined into one file per Bacula component.

For rpm binary there are the following packages:

• baculum-api - main Baculum API package with application files

• baculum-api-httpd - Apache web server configuration files for Baculum API

• baculum-api-lighttpd - Lighttpd web server configuration files for Baculum API

• baculum-common - Common files for Baculum API and Baculum Web

• baculum-web - main Baculum Web package with application files

• baculum-web-httpd - Apache web server configuration files for Baculum Web

• baculum-web-lighttpd - Lighttpd web server configuration files for Baculum Web

2.3.1 Add the Baculum rpm repository

To add the Baculum repository, first you must import the Baculum public key:

rpm --import http://bacula.org/downloads/baculum/baculum.pub

Once the key is imported, the next step is to add the repository definition. First you must create the
following file:

/etc/yum.repos.d/baculum.repo

The for CentOS 7, put the following in the file just created:

[baculumrepo]

name=Baculum CentOS repository

baseurl=http://bacula.org/downloads/baculum/stable/centos

gpgcheck=1

enabled=1

For Fedora 28 the bacula.repo file should have the following contents:

[baculumrepo]

name=Baculum Fedora repository

baseurl=http://bacula.org/downloads/baculum/stable/fedora

gpgcheck=1

enabled=1

2.4. INSTALLATION BACULUM API FROM DEB BINARY PACKAGES 21

2.3.2 Installation for the Apache

Install the Baculum API for the Apache Web server as follows:

yum install baculum-common baculum-api baculum-api-httpd

Restart your Apache Web server:

service httpd restart

2.3.3 Installation for Lighttpd

Installation on system with access via Lighttpd is as follows

yum install baculum-common baculum-api baculum-api-lighttpd

Please note that in case CentOS distribution the Lighttpd web server is available in the distribution packages
after enabling the EPEL repository.
Start Baculum as application using the Lighttpd Web server:

service baculum-api-lighttpd start

2.3.4 Access to bconsole via sudo for Apache and Lighttpd

Baculum API requires access to Bconsole and to Bacula JSON programs. To configure Bconsole sudo access
and the Bacula JSON programs access there can use following entries in newly created Baculum sudoers.d
file (usually in path /etc/sudoers.d/baculum):

In case default Apache user, the file contents must be:

Defaults:apache !requiretty

apache ALL=NOPASSWD: /usr/sbin/bconsole

apache ALL=NOPASSWD: /usr/sbin/bdirjson

apache ALL=NOPASSWD: /usr/sbin/bsdjson

apache ALL=NOPASSWD: /usr/sbin/bfdjson

apache ALL=NOPASSWD: /usr/sbin/bbconsjson

In case default Lighttpd user the file contents must be:

Defaults:lighttpd !requiretty

lighttpd ALL=NOPASSWD: /usr/sbin/bconsole

lighttpd ALL=NOPASSWD: /usr/sbin/bdirjson

lighttpd ALL=NOPASSWD: /usr/sbin/bsdjson

lighttpd ALL=NOPASSWD: /usr/sbin/bfdjson

lighttpd ALL=NOPASSWD: /usr/sbin/bbconsjson

2.4 Installation Baculum API from deb binary packages

Note Before start using Baculum API and Baculum Web version 9.0.0 please backup your Bacula configu-
ration in safe place. It is specially important because on first save config action the Bacula configuration is
joined into one file per Bacula component.

For deb binary there are the following packages:

• baculum-api - main Baculum API package with application files

• baculum-api-apache2 - Apache web server configuration files for Baculum API

• baculum-api-lighttpd - Lighttpd web server configuration files for Baculum API

• baculum-common - Common files for Baculum API and Baculum Web

• baculum-web - main Baculum Web package with application files

• baculum-web-apache2 - Apache web server configuration files for Baculum Web

• baculum-web-lighttpd - Lighttpd web server configuration files for Baculum Web

22 CHAPTER 2. BACULUM API AND WEB GUI TOOLS

2.4.1 Add the Baculum deb repository

To add the Baculum repository, first import the Baculum public key:

wget -qO - http://bacula.org/downloads/baculum/baculum.pub | apt-key add -

Once the key is imported, the next step is to create a new baculum file:

/etc/apt/sources.list.d/baculum.list

For Debian 8 Jessie the contents should be:

deb http://bacula.org/downloads/baculum/stable/debian jessie main

deb-src http://bacula.org/downloads/baculum/stable/debian jessie main

For Debian 9 Stretch the contents should be:

deb http://bacula.org/downloads/baculum/stable/debian stretch main

deb-src http://bacula.org/downloads/baculum/stable/debian stretch main

For Ubuntu 16.04 Xenial the contents should be:

deb [arch=amd64] http://bacula.org/downloads/baculum/stable/ubuntu xenial main

deb-src http://bacula.org/downloads/baculum/stable/ubuntu xenial main

For Ubuntu 18.04 Bionic the contents should be:

deb [arch=amd64] http://bacula.org/downloads/baculum/stable/ubuntu bionic main

deb-src http://bacula.org/downloads/baculum/stable/ubuntu bionic main

After adding repository definition, please refresh repository indexes:

apt-get update

2.4.2 Installation for Apache

To install Baculum API access via Apache Web server by using apt packages manager use the command:

apt-get install baculum-common baculum-api baculum-api-apache2

Next you must enable mod rewrite module for Apache, with the following command:

a2enmod rewrite

and include Baculum VirtualHost definition in the Apache configuration with:

a2ensite baculum-api

The restart your Apache server with:

service apache2 restart

2.4.3 Installation for Lighttpd

Example installation with access via Lighttpd web server looks following:

apt-get install baculum-common baculum-api baculum-api-lighttpd

Start Baculum API as application available through Lighttpd web server:

service baculum-api-lighttpd start

2.5. DEBUGGING YOUR FIRST BACULUM API LOGIN 23

2.4.4 Access to bconsole via sudo for Apache and Lighttpd

Baculum API requires access to Bconsole and to the Bacula JSON programs. To configure Bcon-
sole sudo access we strongly recommend that you create a Baculum sudoers.d file, which should be in
/etc/sudoers.d/baculum:
Note, please define sudo for the Bacula JSON programs only when you are going use Bacula configuration
module in the Baculum.
Both for Apache and Lighttpd user the file contents can be:

Defaults:www-data !requiretty

www-data ALL=NOPASSWD: /usr/sbin/bconsole

www-data ALL=NOPASSWD: /usr/sbin/bdirjson

www-data ALL=NOPASSWD: /usr/sbin/bsdjson

www-data ALL=NOPASSWD: /usr/sbin/bfdjson

www-data ALL=NOPASSWD: /usr/sbin/bbconsjson

2.5 Debugging your First Baculum API Login

At each step of the initial login to Baculum, the screen will have a test button that will allow you to check
to see if your parameters were correctly entered. If not, you will see error message on the wizard page. You
can also get additional detail by examining the Apache error log, that is usually found at:

/var/log/httpd/baculum-api-error.log

If you use Lighttpd thento get additional detail you can check:

/var/log/lighttpd/baculum-api-error.log

In addition, special debug output is placed by Baculum in the file:

/usr/share/baculum/htdocs/protected/API/Logs/baculum-api.log

The debug you can enable in file:

/usr/share/baculum/htdocs/protected/API/Config/api.conf

by switching in [api] section option debug to ”1”.
With the information in those two files, you can usually quickly find and correct most problems.

2.6 Installation Baculum Web from rpm binary packages

2.6.1 Installation for the Apache

Install the Baculum Web for the Apache Web server as follows:

yum install baculum-common baculum-web baculum-web-httpd

Restart your Apache Web server:

service httpd restart

2.6.2 Installation for Lighttpd

Installation on system with access via Lighttpd is as follows

yum install baculum-common baculum-web baculum-web-lighttpd

Please note that in case CentOS distribution the Lighttpd web server is available in the distribution packages
after enabling the EPEL repository.
Start Baculum as application using the Lighttpd Web server:

service baculum-web-lighttpd start

24 CHAPTER 2. BACULUM API AND WEB GUI TOOLS

2.7 Installation Baculum Web from deb binary packages

2.7.1 Installation for Apache

To install Baculum Web access via Apache Web server by using apt packages manager use the command:

apt-get install baculum-common baculum-web baculum-web-apache2

Next you must enable mod rewrite module for Apache, with the following command:

a2enmod rewrite

and include Baculum VirtualHost definition in the Apache configuration with:

a2ensite baculum-web

The restart your Apache server with:

service apache2 restart

2.7.2 Installation for Lighttpd

Example installation with access via Lighttpd web server looks following:

apt-get install baculum-common baculum-web baculum-web-lighttpd

Start Baculum Web as application available through Lighttpd web server:

service baculum-web-lighttpd start

2.8 Running Baculum API and Web for the First Time

2.8.1 Running Baculum API

Access to Baculum API from web browser: http://localhost:9096

First time login: admin

First time password: admin

2.8.2 Running Baculum Web

Access to Baculum Web from web browser: http://localhost:9095

First time login: admin

First time password: admin

2.9 Installation wizards

Installation with HTTP Basic authentication

2.9. INSTALLATION WIZARDS 25

26 CHAPTER 2. BACULUM API AND WEB GUI TOOLS

Installation with OAuth2 authorization

2.9. INSTALLATION WIZARDS 27

28 CHAPTER 2. BACULUM API AND WEB GUI TOOLS

2.10 Baculum API endpoints

2.10.1 Clients

GET /api/clients - get records all clients
GET /api/clients/limit/4 - get records first 4 clients
GET /api/clients/2 - get records only for client with clientid equal 2
GET /api/clients/show - get ’show clients’ bconsole command
GET /api/clients/show/2 - get ’show client=xxx’ bconsole command for client with clientid equal 2
GET /api/clients/status/2 - get ’status client=xxx’ bconsole command for client with clientid equal 2
GET /api/clients/jobs/2 - get all jobs done by client with clientid equal 2

Errors:
0 - No errors.
1 - Invalid command.
2 - Problem with connection to database.
3 - Database access is not supported by this API instance.
4 - Problem with connection to bconsole.
5 - Invalid director.
6 - Problem with authorization to Baculum API.
7 - Access attempt to not allowed resource. Permission denied.
10 - Client with inputted clientid does not exists.
11 - Bconsole support is disabled.
1000 - Internal error.

2.10.2 Storages

GET /api/storages/ - get records all storages.
GET /api/storages/limit/25 - get records first 25 storages.
GET /api/storages/3 - get records only for storage with storageid equal 3.
GET /api/storages/show - get ’show storages’ bconsole command.
GET /api/storages/show/3 - get ’show storage=xxx’ bconsole command for storage with storageid equal 3.
GET /api/storages/status/3 - get ’status storage=xxx’ bconsole command for storage with storageid equal
3.
GET /api/storages/mount/3/2/17 - mount storage with storageid equal 3, drive number 2 and volume in
slot number 17.
GET /api/storages/umount/3/1 - umount storage with storageid equal 3 and drive number 1.
GET /api/storages/release/3 - release storage with storageid equal 3.

Errors:
0 - No errors.
1 - Invalid command.
2 - Problem with connection to database.
3 - Database access is not supported by this API instance.
4 - Problem with connection to bconsole.
5 - Invalid director.
6 - Problem with authorization to Baculum API.
7 - Access attempt to not allowed resource. Permission denied.
11 - Bconsole support is disabled.
20 - Storage with inputted storageid does not exists.
1000 - Internal error.

2.10.3 Volumes

GET /api/volumes/ - get records all volumes.
GET /api/volumes/limit/50 - get records first 50 volumes.
GET /api/volumes/5 - get records only for volume with mediaid equal 5.
GET /api/volumes/prune/5 - call prune action on volume with mediaid equal 5.
GET /api/volumes/purge/5 - call purge action on volume with mediaid equal 5.
GET /api/volumes/jobs/5 - get all jobs done on volume with mediaid equal 5.

2.10. BACULUM API ENDPOINTS 29

GET /api/volumes/required/7/1234/ - get all volumes required to restore file with fileid equal 1234 and
jobid equal 7.
Errors:
0 - No errors.
1 - Invalid command.
2 - Problem with connection to database.
3 - Database access is not supported by this API instance.
4 - Problem with connection to bconsole.
5 - Invalid director.
6 - Problem with authorization to Baculum API.
7 - Access attempt to not allowed resource. Permission denied.
11 - Bconsole support is disabled.
30 - Volume with inputted mediaid does not exists.
1000 - Internal error.

2.10.4 Pools

GET /api/pools/ - get records all pools.
GET /api/pools/limit/15 - get records first 15 pools.
GET /api/pools/7 - get records only for pool with poolid equal 7.
GET /api/pools/show - get ’show pools’ bconsole command.
GET /api/pools/show/7 - get ’show pool=xxx’ bconsole command for pool with poolid equal 7.
PUT /api/pools/update/7 - call ’update pool=xxx’ bconsole command for pool with poolid equal 7.

Errors:
0 - No errors.
1 - Invalid command.
2 - Problem with connection to database.
3 - Database access is not supported by this API instance.
4 - Problem with connection to bconsole.
5 - Invalid director.
6 - Problem with authorization to Baculum API.
7 - Access attempt to not allowed resource. Permission denied.
11 - Bconsole support is disabled.
40 - Pool with inputted poolid does not exists.
1000 - internal error.

2.10.5 Jobs

GET /api/jobs/ - get records all jobs.
GET /api/jobs/limit/20 - get records first 20 jobs.
GET /api/jobs/8 - get records only for job with jobid equal 8.
GET /api/jobs/tasks/ - get job names for all directors
GET /api/jobs/tasks/type/B - get backup job names
GET /api/jobs/tasks/type/R/limit/5 - get first 5 restore job names
GET /api/jobs/recent/myjob/client/myclient-fd/filesetid/62/ - get most recent job identifiers for job
”myjob”, client ”myclient-fd” and fileset with filesetid 62
GET /api/jobs/recent/myjob/clientid/31/filesetid/62/ - get most recent job identifiers for job ”myjob”,
client with clientid 21 and fileset with filesetid 62
POST /jobs/estimate/ - call estimate action on a job.

+---+

| /api/jobs/estimate/ POST request |

+-------------------+---------+---+

| Name | Type | Description |

+-------------------+---------+---+

| create[id] * | integer | job id to get job name for estimate purpose |

| | | (used instead job name) |

+-------------------+---------+---+

30 CHAPTER 2. BACULUM API AND WEB GUI TOOLS

| create[name] * | string | job name to estimate (used instead of jobid) |

| | | |

+-------------------+---------+---+

| create[fileset] * | string | FileSet resource name |

| | | |

+-------------------+---------+---+

| create[level] * | string | Job level in short form. |

| | | One case sensitive letter: |

| | | F => Full |

| | | I => Incremental |

| | | D => Differential |

| | | B => Base |

| | | f => VirtualFull |

| | | V => InitCatalog |

| | | C => Catalog |

| | | O => VolumeToCatalog |

| | | d => DiskToCatalog |

+-------------------+---------+---+

| create[clientid] *| integer | Client identifier |

| | | (used instead of client name) |

+-------------------+---------+---+

| create[client] * | string | Client name (used instead of client id) |

| | | |

+-------------------+---------+---+

| create[accurate] *| integer | Enable accurate mode: 0 - no, 1 - yes |

| | | |

+-------------------+---------+---+

* - required field

POST /api/jobs/run/ - call run action on job (run job).

+---+

| /api/jobs/run/ POST request |

+-------------------+---------+---+

| Name | Type | Description |

+-------------------+---------+---+

| create[id] * | integer | job id to get job name to run |

| | | (used instead job name) |

+-------------------+---------+---+

| create[name] * | string | job name to run (used instead of jobid) |

| | | |

+-------------------+---------+---+

| create[level] * | string | Job level in short form. |

| | | One case sensitive letter: |

| | | F => Full |

| | | I => Incremental |

| | | D => Differential |

| | | B => Base |

| | | f => VirtualFull |

| | | V => InitCatalog |

| | | C => Catalog |

| | | O => VolumeToCatalog |

| | | d => DiskToCatalog |

+-------------------+---------+---+

| create[fileset] * | string | FileSet resource name |

| | | |

+-------------------+---------+---+

| create[clientid] *| integer | Client identifier |

| | | (used instead of client name) |

+-------------------+---------+---+

2.10. BACULUM API ENDPOINTS 31

| create[client] * | string | Client name (used instead of client id) |

| | | |

+-------------------+---------+---+

| create[storageid]*| integer | Storage identifier |

| | | (used instead of storage name) |

+-------------------+---------+---+

| create[storage] * | string | Storage name (used instead of storage id) |

| | | |

+-------------------+---------+---+

| create[poolid] * | integer | Pool identifier (used instead of pool name) |

| | | |

+-------------------+---------+---+

| create[pool] * | string | Pool name (used instead of pool id) |

| | | |

+-------------------+---------+---+

| create[priority] | integer | Job priority to run |

| | | |

+-------------------+---------+---+

| create[jobid] | integer | Job identifier for verify job |

| | | |

+-------------------+---------+---+

| create[verifyjob] | string | Verify job name |

| | | |

+-------------------+---------+---+

* - required field

POST /api/jobs/restore/ - call restore action.

+---+

| /api/jobs/restore/ POST request |

+---------------------+---------+---+

| Name | Type | Description |

+---------------------+---------+---+

| create[rpath] * | string | Bvfs temporary table name for restore purpose |

| | | in form: b2[0-9]+ |

+---------------------+---------+---+

| create[clientid] * | integer | Client identifier |

| | | (used instead of client name) |

+---------------------+---------+---+

| create[client] * | string | Client name (used instead of client id) |

| | | |

+---------------------+---------+---+

| create[priority] | integer | Job priority to run |

| | | |

+---------------------+---------+---+

| create[where] * | string | Destination directory for restored files |

| | | |

+---------------------+---------+---+

| create[replace] * | string | Replace files in destination directory for |

| | | restored files. Available options: |

| | | - never |

| | | - ifolder |

| | | - ifnewer |

| | | - always |

+---------------------+---------+---+

| create[restorejob] | string | Restore job name |

| | | |

+---------------------+---------+---+

| create[strip_prefix]| string | Strip prefix from restored paths /etc |

| | | |

32 CHAPTER 2. BACULUM API AND WEB GUI TOOLS

+---------------------+---------+---+

| create[add_prefix] | string | Add prefix to restored paths /tmp/myetc |

| | | It can’t be used with ’where’ parameter |

+---------------------+---------+---+

| create[add_suffix] | string | Add suffix to restored path e.g. .old |

| | | |

+---------------------+---------+---+

| create[regex_where] | string | Pattern matched for each restored path |

| | | e.g. !a.pdf!a.bkp.pdf! |

+---------------------+---------+---+

* - required field

DELETE /api/jobs/8 - delete by bconsole job with jobid equal 8.

Errors:
0 - No errors.
1 - Invalid command.
2 - Problem with connection to database.
3 - Database access is not supported by this API instance.
4 - Problem with connection to bconsole.
5 - Invalid director.
6 - Problem with authorization to Baculum API.
7 - Access attempt to not allowed resource. Permission denied.
11 - Bconsole support is disabled.
50 - Job with inputted jobid does not exist.
51 - Inputed job level is invalid.
52 - Fileset resource does not exist.
53 - Client does not exist.
54 - Storage does not exist.
55 - Pool does not exist.
56 - [restore only] inputted rpath for restore is invalid. Proper format is b2[0-9]+.
57 - [restore only] inputted ”where” option is invalid.
58 - [restore only] inputted ”replace” option is invalid.
1000 - internal error.

2.10.6 Bvfs

PUT /api/bvfs/lsdirs/ - listing from Bvfs cache directories
PUT /api/bvfs/lsdirs/limit/250 - listing from Bvfs cache directories limited to 250 elements.
PUT /api/bvfs/lsdirs/limit/250/100/ - listing from Bvfs cache directories limited to 250 elements with offset
equal 100.

+---+

| /api/bvfs/lsdirs/ PUT request |

+-------------------+---------+---+

| Name | Type | Description |

+-------------------+---------+---+

| update[jobids] * | string | Job identifiers separated by comma character |

| | | |

+-------------------+---------+---+

| update[path] * | string | Path to list directories in Bvfs job cache |

| | | |

+-------------------+---------+---+

PUT /api/bvfs/lsfiles/ - listing from Bvfs cache files.
PUT /api/bvfs/lsfiles/limit/60/ - listing from Bvfs cache files limited to 60 elements.
PUT /api/bvfs/lsfiles/limit/120/60/ - listing from Bvfs cache files limited to 120 elements with offset equal
60

2.10. BACULUM API ENDPOINTS 33

+---+

| /api/bvfs/lsfiles/ PUT request |

+-------------------+---------+---+

| Name | Type | Description |

+-------------------+---------+---+

| update[jobids] * | string | Job identifiers separated by comma character |

| | | |

+-------------------+---------+---+

| update[path] * | string | Path to list directories in Bvfs job cache |

| | | |

+-------------------+---------+---+

GET /api/bvfs/versions/abc-fd/123/456/789/ - listing from Bvfs cache all files versions for client named
abc-fd, for jobid equal 123, for pathid equal 456 and for filenameid equal 789. URL-encoded client name is
necessary.
GET /api/bvfs/getjobids/9/ - listing from Bvfs cache all elementary jobids which are necessary for restore
all files from job with jobid equal 9 (eg. if jobid 9 is job type incremental or differential).
PUT /api/bvfs/update/ - updating Bvfs cache for specific job.

+---+

| /api/bvfs/update/ PUT request |

+-------------------+---------+---+

| Name | Type | Description |

+-------------------+---------+---+

| update[jobids] * | string | Job identifiers separated by comma character |

| | | |

+-------------------+---------+---+

POST /api/bvfs/restore/ - preparing Bvfs paths for restore command.

+---+

| /api/bvfs/restore/ POST request |

+-------------------+---------+---+

| Name | Type | Description |

+-------------------+---------+---+

| create[jobids] * | string | job identifiers comma separated |

| | | |

+-------------------+---------+---+

| create[dirid] | string | directory identifiers comma separated |

| | | |

+-------------------+---------+---+

| create[fileid] | string | file identifiers comma separated |

| | | |

+-------------------+---------+---+

| create[findex] | string | comma separated pairs jobid and fileindex e.g.|

| | | jobid1,findex1,jobid2,findex2 |

| | | Used to restore hardlinks |

+-------------------+---------+---+

| create[path] * | string | temporary Bvfs table table name |

| | | in form b2[0-9]+ |

+-------------------+---------+---+

* - required field

PUT /api/bvfs/clear/ - call ’.bvfs clear cache yes’ bconsole command.

Errors:
0 - No errors.
1 - Invalid command.
2 - Problem with connection to database.
3 - Database access is not supported by this API instance.

34 CHAPTER 2. BACULUM API AND WEB GUI TOOLS

4 - Problem with connection to bconsole.
5 - Invalid director.
6 - Problem with authorization to Baculum API.
7 - Access attempt to not allowed resource. Permission denied.
11 - Bconsole support is disabled.
71 - Inputted path for restore is invalid. Proper format is b2[0-9]+.
72 - Inputted BVFS path param is invalid.
73 - Invalid jobid list.
74 - Invalid fileid list.
75 - Invalid file index list.
76 - Invalid dirid list.
77 - Invalid client name.
1000 - Internal error.

2.10.7 Config

To configure the Bacula resources is used request in the following URL form:

PUT /api/config/COMPONENT TYPE/RESOURCE TYPE/RESOURCE NAME

• COMPONENT TYPE: dir for Director, sd for Storage Daemon, fd for File Daemon and bcons for
Consoles

• RESOURCE TYPE: Job, Client, Pool, Messages, Schedule, Storage...etc.

• RESOURCE NAME: Resource name from ’Name’ resource directive like ’My Client 123’, ’Device-01’,
’Pool-Incremental-2’ ...etc.

Example config URLs:

PUT /api/config/dir/Client/myclient-fd - editing client ’myclient-fd’. If the Client doesn’t exist, it is created
in config.
PUT /api/config/sd/Device/Drive-01 - editing device ’Drive-01’. If the Device doesn’t exist, it is created in
config.

+---+

| /api/config/component_type/resource_type/resource_name/ PUT request |

+-------------------+---------+---+

| Name | Type | Description |

+-------------------+---------+---+

| update[config] * | string | Bacula config in JSON format. |

| | (JSON) | |

| | | In versions lower than 9.0.6 instead of JSON |

| | | string there was used serialized associative |

| | | PHP array |

+-------------------+---------+---+

* - required field

Errors:
0 - No errors.
6 - Problem with authorization to Baculum API.
7 - Access attempt to not allowed resource. Permission denied.
80 - JSON tools support is disabled.
81 - Problem with connection to a JSON tool.
82 - JSON tool returned wrong exitcode.
83 - JSON tool output was unable to parse.
84 - JSON tool not configured.
93 - Write to config file error.
94 - Config validation error.
1000 - Internal error.

Example cURL commands to test:

2.11. INSTALLATION FROM THE SOURCE TAR FILE 35

curl -X PUT -d update["config"]=’{"AutoPrune":false,"Catalog":"MyCatalog",

"FdPort":9102,"MaximumConcurrentJobs":5,"Name":"easystar-fd","Address":

"172.16.10.12","Password":"mypass"}’

http://user:pass@apihost:9096/api/config/dir/Client/easystar-fd

curl -X PUT -d update["config"]=’{"RemovableMedia":true,"RandomAccess":false,

"AutomaticMount":true,"AlwaysOpen":true,"OfflineOnUnmount":true,"DeviceType":

"Tape","Name":"TapeDrive","MediaType":"LTO5","ArchiveDevice":"/dev/nst0",

"SpoolDirectory":"/mnt/backup","MaximumOpenWait":300}’

http://user:pass@apihost:9096/api/config/sd/Device/TapeDrive

2.11 Installation from the Source Tar File

You may also install Baculum from the source bacula-gui tar archive.
To prepare Baculum runtime files one uses the Makefile file. To do this, after unpacking bacula-gui archive
please go to Baculum main directory:

cd ./web/baculum/

Then please run (depending on used distribution):
For rpm-based distributions (example with /tmp/baculum-runtime destination directory):

make build DESTDIR=/tmp/baculum-runtime

For deb-based distributions (example with /tmp/baculum-runtime destination directory):

make build DESTDIR=/tmp/baculum-release SAMPLETYPE=deb-template \

HTTPDNAME=apache2 HTTPDSITECONF=sites-available

After execution above command, in path /tmp/baculum-runtime should contain all required runtime files.
The Base Baculum source files will be located in:

/tmp/baculum-runtime/usr/share/baculum/htdocs/

These are the files that should be placed in web server’s document root (or Virtual Host document root)
directory.
Please note that for language files (including English) symbolic links must be created as shown below:

/usr/share/locale/en/LC_MESSAGES/baculum.mo

=> /tmp/baculum-runtime/usr/share/baculum/htdocs/protected/Lang/en/baculum.mo

/usr/share/locale/pl/LC_MESSAGES/baculum.mo

=> /tmp/baculum-runtime/usr/share/baculum/htdocs/protected/Lang/pl/baculum.mo

/usr/share/locale/pt/LC_MESSAGES/baculum.mo

=> /tmp/baculum-runtime/usr/share/baculum/htdocs/protected/Lang/pt/baculum.mo

/usr/share/locale/ja/LC_MESSAGES/baculum.mo

=> /tmp/baculum-runtime/usr/share/baculum/htdocs/protected/Lang/ja/baculum.mo

Please also update the symbolic link to the Baculum settings directory in the following paths:

/tmp/baculum-runtime/usr/share/baculum/htdocs/protected/API/Config

/tmp/baculum-runtime/usr/share/baculum/htdocs/protected/Web/Config

Other files are: web servers configuration files, systemd units, SELinux policy module and others. Please
select and copy appropriate files to your system environment and edit their content if needed.
You must set read/write privileges for the Web server user to the files and directories listed below:

./baculum/assets/

./baculum/protected/Web/Config

./baculum/protected/API/Config

./baculum/protected/Web/baculum.users

./baculum/protected/API/baculum.users

./baculum/protected/runtime/

36 CHAPTER 2. BACULUM API AND WEB GUI TOOLS

2.12 OAuth2 authorization

Baculum API can use OAuth2 for authorization and authentication.

To obtain tokens there is used Authorization Code Grant flow. Authorization and access token URLs
are as follows:

Authorization URL: /api/auth/

Access Token URL: /api/token/

Baculum API doesn’t use refresh tokens. After expiration token the client application has to re-authorize
again.

Default expiration time for authorization code is 7 seconds, for access token 60 seconds. These values are
changed in:

/usr/share/baculum/htdocs/protected/Common/Class/OAuth2.php

in constants AUTHORIZATION ID EXPIRES TIME and ACCESS TOKEN EXPIRES TIME.

Default OAuth2 callback URL in Baculum Web is following:

https://baculumgui:9095/web/redirect

2.12.1 Before running OAuth2

Important note before using OAuth2

When you decide to use OAuth2, you must change default HTTP Basic authorization setting. Otherwise
OAuth2 will not work. It is for enabling OAuth2 acces for /api/ endpoints but still keep HTTP Basic
protection for the Baculum API panel pages.

For Apache the change is about switching in Baculum API Apache config the Location tag from / to
/api/page.

NOTE: When you use OAuth2 then change this location section

From: <Location />

To: <Location /api/page>

#

<Location />

AuthType Basic

AuthName "Baculum Auth"

AuthUserFile /usr/share/baculum/htdocs/protected/API/Config/baculum.users

Require valid-user

</Location>

For Lighttpd the change is about uncommenting in API Lighttpd config lines as described in comment below.

#

Uncomment this line and closing braces below when you use OAuth2

#

$HTTP["url"] =~ "^/web/page/.*$" {

auth.backend = "htpasswd"

auth.backend.htpasswd.userfile = "/usr/share/baculum/htdocs/protected/API/Config/baculum.users"

auth.require = ("/" => (

"method" => "basic",

"realm" => "Baculum Auth",

"require" => "valid-user"

)

)

}

2.13. SCREENSHOTS 37

2.13 Screenshots

38 CHAPTER 2. BACULUM API AND WEB GUI TOOLS

2.13. SCREENSHOTS 39

40 CHAPTER 2. BACULUM API AND WEB GUI TOOLS

2.13. SCREENSHOTS 41

42 CHAPTER 2. BACULUM API AND WEB GUI TOOLS

Chapter 3

Bacula Copyright, Trademark, and
Licenses

There are a number of different licenses that are used in Bacula. If you have a printed copy of this manual,
the details of each of the licenses referred to in this chapter can be found in the online version of the manual
at http://www.bacula.org .

3.1 CC-BY-SA

The Creative Commons Attribution-ShareAlike 4.0 International License (CC-BY-SA) is used for this man-
ual, which is a free and open license. Though there are certain restrictions that come with this license you
may in general freely reproduce it and even make changes to it. However, rather than distribute your own
version of this manual, we would much prefer if you would send any corrections or changes to the Bacula
project.
The most recent version of the manual can always be found online at http://www.bacula.org .

3.2 GPL

The vast bulk of the source code is released under the Affero GNU General Public License version 3..
Most of this code is copyrighted: Copyright c©2000-2016, Kern Sibbald.
Portions may be copyrighted by other people. These files are released under different licenses which are
compatible with the Bacula AGPLv3 license.

3.3 LGPL

Some of the Bacula library source code is released under the GNU Lesser General Public License. This
permits third parties to use these parts of our code in their proprietary programs to interface to Bacula.

3.4 Public Domain

Some of the Bacula code, or code that Bacula references, has been released to the public domain. E.g.
md5.c, SQLite.

3.5 Trademark

Bacula
R©

is a registered trademark of Kern Sibbald.

3.6 Fiduciary License Agreement

Developers who have contributed significant changes to the Bacula code should have signed a Fiduciary
License Agreement (FLA), which guarantees them the right to use the code they have developed, and also

43

http://www.bacula.org
http://www.bacula.org

44 CHAPTER 3. BACULA COPYRIGHT, TRADEMARK, AND LICENSES

ensures that the Free Software Foundation Europe (and thus the Bacula project) has the rights to the code.
This Fiduciary License Agreement is found on the Bacula web site at:
http://www.bacula.org/en/FLA-bacula.en.pdf
and if you are submitting code, you should fill it out then sent to:

Kern Sibbald
Sentier du Lycee 1
1009 Pully
Switzerland

When you send in such a complete document, please notify me: kern at sibbald dot com.

3.7 Disclaimer

NO WARRANTY
BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR THE
PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE
STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE
PROGRAM ”AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PER-
FORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE,
YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL
ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDIS-
TRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, IN-
CLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO
LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU
OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PRO-
GRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY
OF SUCH DAMAGES.

3.8 Authors

The following people below have contributed to making this document what it is today:
Alexandre Baron ¡balexfr at users dot sourceforge dot net¿ Arno Lehmann ¡arnol at users dot sourceforge dot
net¿ Bastian Friedrich ¡bastian dot friedrich at collax dot com¿ Christopher S dot Hull ¡csh at raidersolutions
dot com¿ Dan Langille Davide Franco ¡dfranco at dflc dot ch¿ Dirk H Bartley ¡dbartley at schupan dot com¿
Eric Bollengier ¡eric.bollengier at baculasystems dot com¿ Frank Sweetser James Harper bendigoit dot com
dot au¿ Jeremy C dot Reed ¡jeremy-c-reed at users dot sourceforge dot net¿ Jose Herrera ¡herrerajs at yahoo
dot com¿ Jo Simoens Juan Luis Francis ¡indpnday at users dot sourceforge dot net¿ Karl Cunningham
¡karlec at users dot sourceforge dot net¿ Kern Sibbald ¡kern at sibbald dot com¿ Landon Fuller ¡landonf at
opendarwin dot org¿ Lucas Di Pentima Ludovic Strappazon Meno Abels Nicolas Boichat Peter Buschman
Philippe Chauvat ¡philippe.chauvat at baculasystems dot com¿ Philipp Storz Richard Mortimer ¡richm at
oldelvet dot org dot uk¿ Robert Nelson ¡robertn at the-nelsons dot org¿ Scott Barninger Sebastien Guilbaud
Thomas Glatthor Thomas Mueller ¡thomas at chaschperli dot ch¿ Thorsten Engel ¡thorsten dot engel at
matrix-computer dot com¿ Victor Hugo dos Santos ¡victorhugops at users dot sourceforge dot net

http://www.bacula.org/en/FLA-bacula.en.pdf

3.8. AUTHORS 45

Creative Commons Attribution-ShareAlike 4.0 International

Attribution-ShareAlike 4.0 International

Creative Commons Corporation (Creative Commons) is not a law firm and does not provide legal services or legal advice. Distribution of Creative Commons public licenses does not create a lawyer-client or other relationship. Creative Commons makes its licenses and related information available on an as-is basis. Creative Commons gives no warranties regarding its licenses, any material licensed under their terms and conditions, or any related information. Creative Commons disclaims all liability for damages resulting from their use to the fullest extent possible.

Using Creative Commons Public Licenses

Creative Commons public licenses provide a standard set of terms and conditions that creators and other rights holders may use to share original works of authorship and other material subject to copyright and certain other rights specified in the public license below. The following considerations are for informational purposes only, are not exhaustive, and do not form part of our licenses.

Considerations for licensors: Our public licenses are intended for use by those authorized to give the public permission to use material in ways otherwise restricted by copyright and certain other rights. Our licenses are irrevocable. Licensors should read and understand the terms and conditions of the license they choose before applying it. Licensors should also secure all rights necessary before applying our licenses so that the public can reuse the material as expected. Licensors should clearly mark any material not subject to the license. This includes other CC-licensed material, or material used under an exception or limitation to copyright. More considerations for licensors.

Considerations for the public: By using one of our public licenses, a licensor grants the public permission to use the licensed material under specified terms and conditions. If the licensors permission is not necessary for any reasonfor example, because of any applicable exception or limitation to copyrightthen that use is not regulated by the license. Our licenses grant only permissions under copyright and certain other rights that a licensor has authority to grant. Use of the licensed material may still be restricted for other reasons, including because others have copyright or other rights in the material. A licensor may make special requests, such as asking that all changes be marked or described. Although not required by our licenses, you are encouraged to respect those requests where reasonable. More considerations for the public.

Creative Commons Attribution-ShareAlike 4.0 International Public License

By exercising the Licensed Rights (defined below), You accept and agree to be bound by the terms and conditions of this Creative Commons Attribution-ShareAlike 4.0 International Public License ("Public License"). To the extent this Public License may be interpreted as a contract, You are granted the Licensed Rights in consideration of Your acceptance of these terms and conditions, and the Licensor grants You such rights in consideration of benefits the Licensor receives from making the Licensed Material available under these terms and conditions.

Section 1 Definitions.

Adapted Material means material subject to Copyright and Similar Rights that is derived from or based upon the Licensed Material and in which the Licensed Material is translated, altered, arranged, transformed, or otherwise modified in a manner requiring permission under the Copyright and Similar Rights held by the Licensor. For purposes of this Public License, where the Licensed Material is a musical work, performance, or sound recording, Adapted Material is always produced where the Licensed Material is synched in timed relation with a moving image.

Adapter’s License means the license You apply to Your Copyright and Similar Rights in Your contributions to Adapted Material in accordance with the terms and conditions of this Public License.

BY-SA Compatible License means a license listed at creativecommons.org/compatiblelicenses, approved by Creative Commons as essentially the equivalent of this Public License.

Copyright and Similar Rights means copyright and/or similar rights closely related to copyright including, without limitation, performance, broadcast, sound recording, and Sui Generis Database Rights, without regard to how the rights are labeled or categorized. For purposes of this Public License, the rights specified in Section 2(b)(1)-(2) are not Copyright and Similar Rights.

Effective Technological Measures means those measures that, in the absence of proper authority, may not be circumvented under laws fulfilling obligations under Article 11 of the WIPO Copyright Treaty adopted on December 20, 1996, and/or similar international agreements.

Exceptions and Limitations means fair use, fair dealing, and/or any other exception or limitation to Copyright and Similar Rights that applies to Your use of the Licensed Material.

License Elements means the license attributes listed in the name of a Creative Commons Public License. The License Elements of this Public License are Attribution and ShareAlike.

Licensed Material means the artistic or literary work, database, or other material to which the Licensor applied this Public License.

Licensed Rights means the rights granted to You subject to the terms and conditions of this Public License, which are limited to all Copyright and Similar Rights that apply to Your use of the Licensed Material and that the Licensor has authority to license.

Licensor means the individual(s) or entity(ies) granting rights under this Public License.

Share means to provide material to the public by any means or process that requires permission under the Licensed Rights, such as reproduction, public display, public performance, distribution, dissemination, communication, or importation, and to make material available to the public including in ways that members of the public may access the material from a place and at a time individually chosen by them.

Sui Generis Database Rights means rights other than copyright resulting from Directive 96/9/EC of the European Parliament and of the Council of 11 March 1996 on the legal protection of databases, as amended and/or succeeded, as well as other essentially equivalent rights anywhere in the world.

You means the individual or entity exercising the Licensed Rights under this Public License. Your has a corresponding meaning.

Section 2 Scope.

License grant.

Subject to the terms and conditions of this Public License, the Licensor hereby grants You a worldwide, royalty-free, non-sublicensable, non-exclusive, irrevocable license to exercise the Licensed Rights in the Licensed Material to:

reproduce and Share the Licensed Material, in whole or in part; and

produce, reproduce, and Share Adapted Material.

Exceptions and Limitations. For the avoidance of doubt, where Exceptions and Limitations apply to Your use, this Public License does not apply, and You do not need to comply with its terms and conditions.

Term. The term of this Public License is specified in Section 6(a).

Media and formats; technical modifications allowed. The Licensor authorizes You to exercise the Licensed Rights in all media and formats whether now known or hereafter created, and to make technical modifications necessary to do so. The Licensor waives and/or agrees not to assert any right or authority to forbid You from making technical modifications necessary to exercise the Licensed Rights, including technical modifications necessary to circumvent Effective Technological Measures. For purposes of this Public License, simply making modifications authorized by this Section 2(a)(4) never produces Adapted Material.

Downstream recipients.

Offer from the Licensor Licensed Material. Every recipient of the Licensed Material automatically receives an offer from the Licensor to exercise the Licensed Rights under the terms and conditions of this Public License.

Additional offer from the Licensor Adapted Material. Every recipient of Adapted Material from You automatically receives an offer from the Licensor to exercise the Licensed Rights in the Adapted Material under the conditions of the Adapters License You apply.

No downstream restrictions. You may not offer or impose any additional or different terms or conditions on, or apply any Effective Technological Measures to, the Licensed Material if doing so restricts exercise of the Licensed Rights by any recipient of the Licensed Material.

No endorsement. Nothing in this Public License constitutes or may be construed as permission to assert or imply that You are, or that Your use of the Licensed Material is, connected with, or sponsored, endorsed, or granted official status by, the Licensor or others designated to receive attribution as provided in Section 3(a)(1)(A)(i).

Other rights.

Moral rights, such as the right of integrity, are not licensed under this Public License, nor are publicity, privacy, and/or other similar personality rights; however, to the extent possible, the Licensor waives and/or agrees not to assert any such rights held by the Licensor to the limited extent necessary to allow You to exercise the Licensed Rights, but not otherwise.

Patent and trademark rights are not licensed under this Public License.

To the extent possible, the Licensor waives any right to collect royalties from You for the exercise of the Licensed Rights, whether directly or through a collecting society under any voluntary or waivable statutory or compulsory licensing scheme. In all other cases the Licensor expressly reserves any right to collect such royalties.

Section 3 License Conditions.

Your exercise of the Licensed Rights is expressly made subject to the following conditions.

46 CHAPTER 3. BACULA COPYRIGHT, TRADEMARK, AND LICENSES

Attribution.

If You Share the Licensed Material (including in modified form), You must:

retain the following if it is supplied by the Licensor with the Licensed Material:

identification of the creator(s) of the Licensed Material and any others designated to receive attribution, in any reasonable manner requested by the Licensor (including by pseudonym if designated);

a copyright notice;

a notice that refers to this Public License;

a notice that refers to the disclaimer of warranties;

a URI or hyperlink to the Licensed Material to the extent reasonably practicable;

indicate if You modified the Licensed Material and retain an indication of any previous modifications; and

indicate the Licensed Material is licensed under this Public License, and include the text of, or the URI or hyperlink to, this Public License.

You may satisfy the conditions in Section 3(a)(1) in any reasonable manner based on the medium, means, and context in which You Share the Licensed Material. For example, it may be reasonable to satisfy the conditions by providing a URI or hyperlink to a resource that includes the required information.

If requested by the Licensor, You must remove any of the information required by Section 3(a)(1)(A) to the extent reasonably practicable.

ShareAlike.

In addition to the conditions in Section 3(a), if You Share Adapted Material You produce, the following conditions also apply.

The Adapters License You apply must be a Creative Commons license with the same License Elements, this version or later, or a BY-SA Compatible License.

You must include the text of, or the URI or hyperlink to, the Adapter’s License You apply. You may satisfy this condition in any reasonable manner based on the medium, means, and context in which You Share Adapted Material.

You may not offer or impose any additional or different terms or conditions on, or apply any Effective Technological Measures to, Adapted Material that restrict exercise of the rights granted under the Adapter’s License You apply.

Section 4 Sui Generis Database Rights.

Where the Licensed Rights include Sui Generis Database Rights that apply to Your use of the Licensed Material:

for the avoidance of doubt, Section 2(a)(1) grants You the right to extract, reuse, reproduce, and Share all or a substantial portion of the contents of the database;

if You include all or a substantial portion of the database contents in a database in which You have Sui Generis Database Rights, then the database in which You have Sui Generis Database Rights (but not its individual contents) is Adapted Material, including for purposes of Section 3(b); and

You must comply with the conditions in Section 3(a) if You Share all or a substantial portion of the contents of the database.

For the avoidance of doubt, this Section 4 supplements and does not replace Your obligations under this Public License where the Licensed Rights include other Copyright and Similar Rights.

Section 5 Disclaimer of Warranties and Limitation of Liability.

Unless otherwise separately undertaken by the Licensor, to the extent possible, the Licensor offers the Licensed Material as-is and as-available, and makes no representations or warranties of any kind concerning the Licensed Material, whether express, implied, statutory, or other. This includes, without limitation, warranties of title, merchantability, fitness for a particular purpose, non-infringement, absence of latent or other defects, accuracy, or the presence or absence of errors, whether or not known or discoverable. Where disclaimers of warranties are not allowed in full or in part, this disclaimer may not apply to You.

To the extent possible, in no event will the Licensor be liable to You on any legal theory (including, without limitation, negligence) or otherwise for any direct, special, indirect, incidental, consequential, punitive, exemplary, or other losses, costs, expenses, or damages arising out of this Public License or use of the Licensed Material, even if the Licensor has been advised of the possibility of such losses, costs, expenses, or damages. Where a limitation of liability is not allowed in full or in part, this limitation may not apply to You.

The disclaimer of warranties and limitation of liability provided above shall be interpreted in a manner that, to the extent possible, most closely approximates an absolute disclaimer and waiver of all liability.

Section 6 Term and Termination.

This Public License applies for the term of the Copyright and Similar Rights licensed here. However, if You fail to comply with this Public License, then Your rights under this Public License terminate automatically.

Where Your right to use the Licensed Material has terminated under Section 6(a), it reinstates:

automatically as of the date the violation is cured, provided it is cured within 30 days of Your discovery of the violation; or

upon express reinstatement by the Licensor.

For the avoidance of doubt, this Section 6(b) does not affect any right the Licensor may have to seek remedies for Your violations of this Public License.

For the avoidance of doubt, the Licensor may also offer the Licensed Material under separate terms or conditions or stop distributing the Licensed Material at any time; however, doing so will not terminate this Public License.

Sections 1, 5, 6, 7, and 8 survive termination of this Public License.

Section 7 Other Terms and Conditions.

The Licensor shall not be bound by any additional or different terms or conditions communicated by You unless expressly agreed.

Any arrangements, understandings, or agreements regarding the Licensed Material not stated herein are separate from and independent of the terms and conditions of this Public License.

Section 8 Interpretation.

For the avoidance of doubt, this Public License does not, and shall not be interpreted to, reduce, limit, restrict, or impose conditions on any use of the Licensed Material that could lawfully be made without permission under this Public License.

To the extent possible, if any provision of this Public License is deemed unenforceable, it shall be automatically reformed to the minimum extent necessary to make it enforceable. If the provision cannot be reformed, it shall be severed from this Public License without affecting the enforceability of the remaining terms and conditions.

No term or condition of this Public License will be waived and no failure to comply consented to unless expressly agreed to by the Licensor.

Nothing in this Public License constitutes or may be interpreted as a limitation upon, or waiver of, any privileges and immunities that apply to the Licensor or You, including from the legal processes of any jurisdiction or authority.

3.8. AUTHORS 47

Creative Commons is not a party to its public licenses. Notwithstanding, Creative Commons may elect to apply one of its public licenses to material it publishes and in those instances will be considered the Licensor. Except for the limited purpose of indicating that material is shared under a Creative Commons public license or as otherwise permitted by the Creative Commons policies published at creativecommons.org/policies, Creative Commons does not authorize the use of the trademark Creative Commons or any other trademark or logo of Creative Commons without its prior written consent including, without limitation, in connection with any unauthorized modifications to any of its public licenses or any other arrangements, understandings, or agreements concerning use of licensed material. For the avoidance of doubt, this paragraph does not form part of the public licenses.

Creative Commons may be contacted at creativecommons.org.

	Bacula Console
	Console Configuration
	Running the Console Program
	Stopping the Console Program
	Alphabetic List of Console Keywords
	Alphabetic List of Console Commands
	Special dot Commands
	Special At (@) Commands
	Running the Console from a Shell Script
	Adding Volumes to a Pool

	Baculum API and Web GUI Tools
	Base Features
	General Requirements
	Installation Baculum API from rpm binary packages
	Add the Baculum rpm repository
	Installation for the Apache
	Installation for Lighttpd
	Access to bconsole via sudo for Apache and Lighttpd

	Installation Baculum API from deb binary packages
	Add the Baculum deb repository
	Installation for Apache
	Installation for Lighttpd
	Access to bconsole via sudo for Apache and Lighttpd

	Debugging your First Baculum API Login
	Installation Baculum Web from rpm binary packages
	Installation for the Apache
	Installation for Lighttpd

	Installation Baculum Web from deb binary packages
	Installation for Apache
	Installation for Lighttpd

	Running Baculum API and Web for the First Time
	Running Baculum API
	Running Baculum Web

	Installation wizards
	Baculum API endpoints
	Clients
	Storages
	Volumes
	Pools
	Jobs
	Bvfs
	Config

	Installation from the Source Tar File
	OAuth2 authorization
	Before running OAuth2

	Screenshots

	Bacula Copyright, Trademark, and Licenses
	CC-BY-SA
	GPL
	LGPL
	Public Domain
	Trademark
	Fiduciary License Agreement
	Disclaimer
	Authors

